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Abstract: The cost of switching devices increases 
exponentially by increasing their rating. Hence, 
attractiveness of using unified power quality conditioners 
(UPQC) is reduced when compensation to be carried out for 
high power sensitive loads. In this paper, a new 
configuration for UPQC is presented. Using the 
fundamental power flow analysis, it is shown that by 
interchanging the position of series and parallel part of 
UPQC, the total rating of compensator decreases. To 
acquire more rating reduction, a new simple control 
algorithm is presented for voltage compensation by 
injecting the reactive power. Using numerical simulations, 
the performance of proposed and conventional 
configurations is compared to show their operational 
effectiveness and limitations in different loads and network 
conditions. 
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1.  Introduction 
 
A great part of total generated electric power is used by 
industrial consumers. These kinds of costumers need a 
reliable and high quality power for proper operation. On the 
other hand, their nonlinear nature causes current distortion 
that deteriorates distribution systems components and 
generates voltage distortion as passes through the network 
impedance. The voltage distortion like harmonic, sag and 
swell can interrupt many industrial activities by affecting 
the sensitive devices. 
 Active power filters (APFs) have been used in three last 
decades to compensate the voltage and current quality 
problems. Parallel active power filters (PAPFs) can 
eliminate current distortions caused by loads and perform 
power factor correction. On the other hand, to protect 
sensitive consumers from voltage distortions, series active 
power filters (SAPFs) are used [1]. 
 There exist four trends to enable the more efficient 
utilization of APFs for protecting the high power loads and 
networks against power quality disturbances. They are 
described as follows: 
Improvement of manufacturing technology of APF's 
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semiconductor switches to reduce the cost and increase the 
rating. 
 Application of hybrid configurations of active and 
passive power filters. The passive part compensates low 
order disturbances and the active part eliminates high order 
harmonics. In this way, the rating of APF is greatly reduced 
because it does not deal with all harmonics [2]. 
 Using the selective harmonic compensation algorithms 
to minimize the rating of series and parallel APFs. 
Depending on the network structure and its characteristics, 
some harmonics give rise to more severe problems. 
Focusing only on compensation of critical harmonics (like 
the ones which excite system resonance frequency)the total 
rating of APF will be reduced [3,4]. 
 Optimization of APF power flow by using the energy 
optimized control algorithms. The angle between the 
injected voltage by SAPF and the current passes though it 
can be optimized to minimize the active power exchange 
between APF and network which can reduce its rating [5,6]. 
 By connecting a SAPF and a PAPF through their dclink, 
a unified power quality conditioner (UPQC) is produced [7] 
as shown in Fig. 1(a). Each part consists of a voltage source 
inverter (VSI) which generates compensating voltages and 
currents. This device can simultaneously compensates 
voltage distortions like sag, swell, flicker, current 
harmonics and reactive power in distribution system [8,9]. 
 There exist two distinct control strategies to generate the 
reference waveforms for series part of UPQC. If the 
injected voltage is in phase with the source current, the 
voltage compensation is achieved by the active power. If 
the injected voltage is orthogonal to the source current, the 
reactive power is used to achieve the voltage compensation 
[10]. 
 The main contribution of current paper is introducing a 
new power quality conditioner device named inverse 
unified power quality conditioner (I-UPQC). The 
conventional UPQC in which the series part is at the 
network side is compared with an inverse unified power 
quality conditioner where the series part is at the load side 
as shown in Fig. 1(b). The active and reactive power 
control strategies are compared and their effects on the 
device rating are analyzed. 
 In the next section, the flow of active power in UPQC 
and I-UPQC is analyzed during occurrence of a voltage sag 
and swell. Then in section III, by considering the same 
voltage sag condition, the total rating of UPQC and  
I-UPQC is compared. In section IV, the control algorithms 
for generating the reference waveforms of series and 
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parallel part of UPQC and I-UPQC are presented. Finally, 
in section V the performance of two configurations is 
examined using numerical simulations. The necessary 
comparison is also made in this section. 

2.  Power Flow Analysis 
 

The amount of active power drawn from the network by 

shunt component of UPQC and I-UPQC during sag 

depends on the power that is fed into the network by their 

series components. This power is dependent on the angle of 

the voltage injected by the series part and the current passes 

through the series transformer. If the voltage generated by 

series VSI has the same angle as that of the source current, 

the compensator injects real power into the network to 

regulate the load voltage. As the angle between the source 

current and the injected voltage increases, the active power 

injected by the series part decreases, so the shunt part draws 

less active power from network. In this condition the 

voltage regulation is performed by injecting reactive power 

which is generated by the series VSI. 
 

 
 

Fig. 1.  Configuration of (a) UPQC and (b) I-UPQC 
 

 Identical to UPQC, during sag, I-UPQC draws active 

power (PShunt) from the network by its shunt part and 

injects it (PSereis) into the network by its series part as 

shown in Fig. 2. The reverse process occurs during voltage 

swell. As can be seen from Fig. 3, when voltage swell 

occurs, the shunt component injects active power which is 

drawn by series component. 

 

3.  Rating Analysis 
 

Rating of UPQC and I-UPQC can be calculated by 
fundamental frequency power flow analysis. Suppose our 
aim is to compensate x p.u. sag or swell. As the voltage sag 
is more common in distribution networks, here their rating 
are calculated only for operation in sag condition. The same 
procedure can be used to calculate the compensators rating 
when the voltage swell occur. 
 
A. Rating of UPQC 

Due to common DC link between shunt and series parts of 
the UPQC, active power can flow between two parts. When 
a sag occurs, the shunt component draws active power 
(PShunt) from the network and the series component injects 
it (PSereis) to the network as shown in Fig. 4. The reverse 
process occurs during the voltage swell. 
 

 
Fig. 2.  Power flow in I-UPQC during voltage sag. 

 

 

 
Fig. 3.  Power flow in I-UPQC during voltage swell. 

 

 
 

Fig. 4.  Power flow in UPQC during voltage sag. 
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Fig. 5.  Power flow in UPQC during voltage swell. 

 
 As can be seen from Fig. 5, when the voltage swell 
occurs, the shunt component injects active power which is 
drawn by the series component. The power demand of the 
total system is equal to the sum of load power and the 
internal losses of UPQC, i.e., 
 

Source Shunt Load Series LossP P P P P     (1) 

  
where PLoss consists of switching and copper losses of the 
coupling transformers. 
 Suppose that the amplitude of the source voltage and 
load current is equal to 1.0 p.u. and x is the sag amplitude, 
then we have 
 

1 1 1.0 p.u.S LV V    

1 2 1.0 p.u.L LI I   (2) 

2 1(1 ) p.u.S SV x V    

  
where subscripts L and S correspond to load and source, 1.0 
and 2.0 represent the quantities before and during sag. 
Respectively if the SAPF of the UPQC generates all 
reactive power needed by load, the angle between source 
voltage and current will be zero, i.e., 
 

cos(0) cosS S L LV I V I   (3) 
 

 
where  is the angle between fundamental component of 
load current and voltage. Therefore as shown in Fig. 6 the 
UPQC injects IC1 into the network to compensate the load 
reactive power. When the voltage sag occurs the series part 
maintains the load voltage constant therefore, the load 
power remains constant before and during voltage sag, i.e., 
 

1 1 2 2cosL L S S S SV I V I V I    (4) 
 

 
 Therefore, the current drawn from source during sag 
would equals to 
 

2
1

cos

(1 )
L L

S
S

V I
I

x V




 
(5) 

 
 
 

 The current of SAPF can be calculated by (6) using 
trigonometry of the vector diagram of Fig. 6, i.e., 

 
2 2 0.5

2 1 2 1 2

0.52 2

( 2 cos )

(1 ) (2 1)cos

(1 )

C L S L SI I I I I

x x

x





  

        
 

(6) 

 The shunt filter voltage can be calculated by (7), 
 

2Shunt S shunt CV V Z I   (7) 
 
 

 In this equation Zshunt is the equivalent impedance of 
shunt coupling transformer which is supposed to be 0.1 p.u. 
Therefore the rating of the shunt component is 
 

 
Fig. 6.  Phaser diagram of voltage compensation by injecting 

 active power. 

 
2 2( )shunt S shunt C CS V Z I I   (8) 

  
Substitution of (6) into (8) yields 

 2 2

2 2

2

(1 ) (2 1) cos
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(1 ) (2 1) cos

(1 )
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(9) 

 When the UPQC injects active power into the network, 
the angle between injected voltage and the network voltage 
is zero, i.e., 
 

inj P C SV V xV    (10) 
 
 

Using (5) and (10) and considering VS=1.0 p.u, we have 
 

2

cos

1series C S

x
S V I

x

 


 (11) 

 
and the total rating of UPQC is the sum of Sshunt and 
Sseries, i.e., 

UPQC shunt seriesS S S   (12) 
 


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 This is the rating of the UPQC when it is designed to 
compensate the voltage sags as large as x p.u. by injecting 
active power into the network. If the reactive power is 
injected into the network to regulate the voltage, the 
amplitude of the injected voltage is calculated by following 
equation using the trigonometry of vectors shown in Fig. 7 
 

 
Fig. 7.  Phaser diagram of voltage compensation by injecting 

reactive power. 

 
2 2
1 2 2(2 )inj Q C S SV V V V x     

 
 

(13) 

 In Fig. 7, IC1 shows the injected current to compensate 
for the load reactive current when the network voltage is 
normal. 
 The current passes through the series transformer is 
equal to (5). Hence, the rating of the SAPF is given by 
following; 
 

(2 )
. cos

1series inj Q series

x x
S V I

x


 


 (14) 

 
 The current of the shunt filter IC2 equals; 
 

2 2
2 2 2 2 2

2 2

2 cos( )

(1 ) cos 2(1 )cos cos( )
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C L S L SI I I I I
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 (15) 

 
 Then, the voltage of the SAPF can be calculated using 
(8). The rating of SAPF can be obtained by productof its 
voltage and current as follows; 
 

2 2

2 2

2

(1 ) cos 2(1 )cos cos( )

1

(1 ) cos 2(1 )cos cos( )
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(16)

 
 

 Finally, the total rating of UPQC is determined using 
equation (12). 
 
B. Rating of I-UPQC 
The rating of I-UPQC differs from that of UPQC because 
when a sag occurs as shown in Fig. 2, the extra power 
drawn by the PAPF does not pass through the series 
transformer. On the other hand, the shunt filter voltage, 
Vshunt, is not the same in UPQC and I-UPQC due to the 
position of SAPF. 
 The current in series component of the I-UPQC is equal 
to the load current 
 

1 2 1.0 p.u.series L LI I I  
 

(17) 

 
and the voltage injected by series component is 
 

p.u.inj P CV V x    (18) 

 
therefore the rating of the SAPF is given by; 
 

1 p.u.series C LS V I x   (19) 

 
 In this case the current of PAPF is the same as (6) and its 
voltage equals to 
 

1

2 2(1 ) ( 1)cos
(1 )
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V V Z I

x x
x Z

x


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(20)

 
 

and the rating of the shunt part of I-UPQC is calculated by 
(21), 
 

1
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(21) 

 
 If the voltage regulation is performed by injecting 
reactive power into the network, the current of the PAPF is 
 

2 2
2 2 2 2 2

2 2

2 cos( )

(1 ) cos 2(1 )cos cos( )
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 (22)
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Fig. 8.  Rating of UPQC and I-UPQC using active and reactive power injection. 
 
 
 Hence, the voltage and rating of the shunt active power 
filter is 
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(23) 

 
 The magnitude of voltage injected by SAPF is calculated 
by (24) using trigonometry  
 

2 2
2 2 (2 ) . .inj Q L SV V V x x p u      (24)

 
Remembering IL2 = Iseries=1.0 p.u., rating of series filter 
is 
 

(2 ) . .series inj Q seriesS V I x x p u    

 
(25)

 The sum of (23) and (25) yields total rating of I-UPQC 
when voltage regulation is performed by injecting voltage 
orthogonal to source current. 

A) Comparison 
The equations derived in the previous section are used to 
compare the rating of UPQC and I-UPQC for different 
power factors. Assume that 0 60   , (0<PF<1.0), and 
load rating to be 1.0 p.u. 
 Fig. 8 shows the results. Rating of the UPQC increases 
with increasing the level of voltage sag and the load power 
factor. The rating of I-UPQC in active power injection 
mode is higher than that of UPQC whereas in reactive 
power injection mode, has lower rating especially for power 
factors near unity. Generally, I-UPQC in active power 
injection mode needs lower rating for compensation of 
same voltage sag among four cases. With regard to the 
rating, the following results are provided upon which the 
proper choice for sag compensation under different values 
of power factors can be made. 
 If load power factor is low (near 0.5), using I-UPQC 
with reactive power injection mode leads to lowest rating. 
 If load power factor is high(near unity), using I-UPQC or 
UPQC with active power injection mode leads to lowest 
rating. However, for deep voltage sags I-UPQC has lower 
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rating in compare with UPQC. 
 If load has a moderate power factor (between high and 
low, around 0.7) and the voltage sag factor is below 0.4, 
UPQC with reactive power injection yields lowest rating. 
Fig. 9 concludes the results. 
 
4.  Negative Effects of Exchanging Shunt and Series 
Parts 
 

When UPQC is used, the load current harmonics are 
compensated before passing through series transformer. On 
the contrary, in I-UPQC configuration, the harmonics of 
load current pass through the series transformer and cause 
deteriorating of this device. On the other hand, when the 
leakage reactance of the series transformer is high, 
harmonic components of load current generate a significant 
amount of voltage harmonics. Suppose that the desirable 
THD for load voltage is below 5.0%. Therefore, as proved 
in Appendix A the following inequality must be hold to 
satisfy this constraint. 
 

 
Fig. 9.  The lowest rating for different sag factor and load power 

factor cases (P: active power injection, Q: reactive power 
injection). 
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( 26 )

where Xleakage is the leakage reactance of the SAPF 
transformer and ILn is the nth harmonic component of the 
load current. 
 Fig. 10 shows the effect of the load current THD on the 
load voltage THD. As the leakage reactance of the 
transformer increases, the load current harmonics cause 
more sever distortion in load voltage. To reduce this effect 
below the desirable level, Xleakage must be maintained 
below 3.0%. 
 If the load current contains high frequency harmonics, 
larger voltage harmonics are produced. As proven in 
Appendix B the sensitivity of the load voltage THD with 
respect to load current harmonics is defined by following 
equation; 
 

2

2

2

for
( )

THD Ln
ILn

Ln
n

n I
S n

nI




 


 
(27)

 
 The effect of increasing the load current harmonic order 
on this sensitivity is shown in Fig. 11. When the load 
current contains high frequency components, its effect on 
the load voltage THD increases quadratically, therefore, 
when the load current contains high order harmonics, 
UPQC configuration is a better choice. 

5.  Reference Waveform Estimation Strategy  
 
Reference waveforms of shunt and series active power 
filters of I-UPQC and UPQC can be estimated utilizing 
various methods. Here a method based on instantaneous 
reactive power theory is used to generate reference 
waveforms of the PAPF. 
 
 

 
 

Fig. 10.  Effect of load current THD on load voltage THD in I-
UPQC configuration. 

 

 
 

Fig. 11.  Sensitivity of load voltage THD to load current harmonic 
components. 
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waveforms of the SAPF. This method can generate the 
proper waveforms for both active and reactive power 
injection cases. 
 
A. SAPF Waveform Estimation  
Reference waveform of series part of power quality 
compensator is the difference between actual voltage of the 
network and the load ideal voltage according to IEEE-519 
standard. An algorithm based on synchronous reference 
frame transformation is used to generate reference 
waveforms of SAPF. This method is a modified version of 
algorithm presented in [11]. 
 Source voltage is transformed into synchronous 
reference frame by following equation, 
 

0

cos cos( 120) cos( 120)
2

sin sin( 120) sin( 120)
3

0.5 0.5 0.5

  
    
  

Sdq Sabc

t t t

V t t t V

  
  

 

(28)

 
 To perform in phase and orthogonal voltage 
compensation, following algorithms are used. 
 In Phase Voltage Injection: Considering instantaneous 
phase of network voltage (ωt) as a reference angle, to 
regulate the load voltage by injecting a nin phase voltage, 
the ideal source voltage in the synchronous reference frame 
is 
 

*
0 [ 0 0] T

Sdq mv V  

 
( 29 )

 The load voltage ideal magnitude is shown by Vm. The 
reference voltage of SAPF is 
 

* *
0 0 0cdq Sdq Sdqv v v   

 
( 3 0 )

 To obtain three phase reference voltages, *
0cdqv are 

transformed into the three phase space. Fig. 12 shows the 
block diagram of the proposed algorithm. 
 
B. Orthogonal Voltage Injection: 

Considering orthogonality of d and q axes in the 
synchronous reference frame, to obtain the voltage 
compensation by injecting reactive power, the injected 
voltage should be in phase with q-axis. In the case of using 
UPQC, due to the PAPF operation, the source current and 
voltage are in phase. Therefore, if the injected voltage is 
orthogonal to the source voltage, it is also orthogonal to the 
source current, so the reactive power injection is provided. 
Supposing Vm to be the ideal magnitude of the load 
voltage, the reference voltage of the orthogonal method can 
be calculated as follows: 
 

*
cd Sdv v  

( 31 )
 
 

* 2 2
cq m Sdv V v 

 

( 32 )
 

 Fig. 13 shows the block diagram of the SAPF reference 
waveform estimation when the injected voltage is 
orthogonal to the source current. 
 When the I-UPQC is utilized, the injected voltage is 
aligned with q-axis which leads to the angle difference of 
( / 2 )     between the load current and the injected 
voltage which is not equal to / 2  as shown in Fig. 7. This 
gives rise to the injection of active power into the network. 
 

 
Fig. 12.  Block diagram of SAPF reference waveform generation 

(in phase voltage injection). 
 

 

 
 
Fig. 13.  Block diagram of SAPF reference waveform generation 

(orthogonal voltage injection). 
 
 Assuming |IL|=1.0 p.u. and θ as angle between the 
source and the load voltage after compensation, the injected 
active power is 
 

(2 ) sin(| |)injp x x      

 
( 33)

 Fig. 14 shows this active power as a function of voltage 
sag magnitude (x) and the load power factor.  
 By using the orthogonal voltage algorithm, the injection 
of active power is less in compare with the in  phase 
method when the sag factor x is above 0.3 p.u. and the 
power factor is below 0.9. However, the maximum of 
injected active power is less when in phase method is used. 
To reduce the active power which is injected by SAPF, the 
angle between fundamental component of the load current 
and the source voltage (power factor) must be known. 
 Orthogonal voltage injection leads to load voltage phase 
jump. The amount of this phase jump ( ) rises as the 
amplitude of the sag increases, i.e., 
 

*
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is used for estimation of additional reactive power. The 
error voltage i.e., the difference between amplitude of the 
source voltage in d-axis and its nominal value is fed into 
this controller and the output is considered as an extra 
reactive power. 
 Assuming q


 as the output of PI controller, reference 

waveforms of PAPF are as follows; 
 

*
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 Fig. 17 shows the block diagram of the reference 
waveform generation algorithm for PAPF. By using this 
method, the phase difference between the load and source 
voltage no longer causes the unwanted reactive power flow 
through the network and the compensator. 
 

 
Fig. 16.  Shunt active power reference waveform estimation for in 

phase voltage injection. 
 

 

 
Fig. 17.  Shunt active power reference waveform estimation for 

orthogonal voltage injection. 

6.  Simulation Results 
 
Using PSCAD/EMTDC software package, two 
configurations of power quality conditioners under the 
control of the aforementioned algorithms are simulated. A 
full-bridge three phase rectifier is used as a nonlinear load 
and simulations are performed at 20kV level. The 
compensator and the load parameters are shown in Table I. 
 
Case A: Current Compensation 

Fig. 18 shows the load current and the source current after 
compensation made by UPQC and I-UPQC. The load 
current consists large of amount of harmonics with order
6 1; 1,2,3,...n n  . The magnitude of the load current 
harmonics is 20% for 5th and 8.0% for 7th harmonic. The 

uncompensated source current is equal to the load current. 
The compensated source current is nearly sinusoidal having 
THD about 1.3% and 1.7%, respectively in UPQC and I-
UPQC. 
 
Case B: Voltage Sag Compensation by Injecting Active Power  
Operation of two compensators during voltage sag and 
swell is shown in Fig. 19. The magnitude of the source 
voltage is reduced by 25% at 0.09 s and is increased by 
same amount at 0.15 s. Using in phase voltage injection, 
both configurations regulate the load voltage. However, by 
considering the same rating for shunt and series part in both 
devices, I-UPQC shows better performance during sag and 
swell. The UPQC creates voltage disturbances at instant 
0.06 sec when it begins to start voltage compensation, and 
also the same happens at 0.09 and 0.15 s during voltage sag 
and swell. Series part of UPQC needs greater rating to 
operate smoothly and without disturbances in the case of 
sag and swell occurrence. 
 

Table 1.  Load and compensator parameters. 
 

Load 
Load rating 
Load Voltage 
Load transformer 

5 MW, 1.3 MVAR 
63 kV 
Y/Δ, 20-6.3 kV, 5 MVA 
Compensator 

DC link capacitor 
Series transformer 
Series VSI 
switching drive 
Shunt transformer 
Shunt VSI 
switching drive 

700 µF, 40 kV 
3×one-phase, 3 MVA, 10-20 kV 
PWM, fswitching = 10 kHz 
Y/Y, 20-20 kV 
Hysteresis, Hysteresis band = 0.01 

 

 
Fig. 18.  From top to bottom: load current, source current 

compensated by UPQC, source current compensated by I-UPQC. 

 
Case C: Voltage Sag Compensation by Injecting Reactive Power 
To access the compensator performance in voltage 
compensation by injecting orthogonal voltage, a voltage sag 
as deep as 25%, started at t = 0.1 sec is supposed. Fig. 20 
shows the load voltages after compensation made by UPQC 
and I-UPQC. The load voltage is regulated, however a 
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phase jump about 41° is observed at the beginning of the 
voltage sag. 

 
 

Fig. 19.  Voltage compensation using in phase voltage injection; 
from top to bottom: source voltage, load voltage compensated by 

UPQC, load voltage compensated by I-UPQC. 

 

 
 

Fig. 20.  Voltage compensation using orthogonal voltage 
injection; load voltage compensated by UPQC (top), load voltage 

compensated by I-UPQC (bottom). 
 
Case D: Effect of Orthogonal Voltage Injection on Load Current 
Fig. 21 shows the effect of voltage compensation on load 
current when voltage regulation is performed by reactive 
power injection. The source voltage is dropped at instant 
0.09 sec. The UPQC with in phase current injection causes 
phase difference between the source voltage and current. In 
contrary, the orthogonal current injection method eliminates 

phase difference between the source current and voltage, so 
the source does not supply any reactive power. 
 As discussed in Section. V-A, the voltage regulation 
using I-UPQC with proposed algorithm is not achieved by 
pure reactive power injection. Fig. 22 shows the angle 
between the voltage of the series transformer and its current 
during the compensation of voltage sag. The phase 
difference between the voltage and current of SAPF part of 
the UPQC is about 90° but it is near 68° for the I-UPQC as 
predicted by (34). 
 The load power factor is 0.95 lag, which leads to 
| | 23     displacement angle between the injected 
voltage and the load current. 
 

 
Fig. 21.  Source voltage and current compensated by UPQC using 

in phase and orthogonal current control algorithms. 
 

 
Fig. 22.  Phase difference between injected voltage and series 

transformer current. 
 
Case E: Effects of Source Voltage Unbalance on Current 
Compensation 
Considering the configuration of the UPQC, the voltage of 
PAPF is pre-regulated by SAPF, so the current 
compensation is not affected by voltage distortions. On the 
other hand, the PAPF of the I-UPQC is directly connected 
to the network so the voltage distortions affect its operation. 
The algorithm described in Section V-B for controlling 
PAPF is not robust against voltage distortions. Fig. 23 
shows the source voltage and current when the network 
voltage is unbalance. The voltage of phase b is 25% lower 
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than other phases and contains 6.5% positive and zero 
sequence components. By using UPQC, the magnitudes of 
the source current harmonics are nearly reduced to an 
acceptable limit (THD about 6%). Where as I-UPQC is not 
able to reduce source current harmonics effectively. The 
source current contains 15% third harmonic and the total 
harmonic distortion is 12%. So the I-UPQC configuration 
can not compensate current distortions in the presence of 
the network voltage distortions. To overcome this problem 
the control algorithm of the PAPF to be such that not 
affected by the source voltage distortions [13]. 
 

 
 

Fig. 23.  From top to bottom: source voltage (unbalanced), source 
current compensated by UPQC, source current compensated by 

 I-UPQC. 
 

7.  Conclusion 
 
Using the mathematical representations it is shown that if 
the series part of UPQC is interchanged with its shunt part 
such that the series part is located at load side (known as  
I-UPQC), the total rating of the compensator will be 
reduced when the load draws a large amount of reactive 
power from the network. Further rating reduction is 
possible by using reactive power injection for voltage 
regulation. 
 The negative effects of modifying UPQC into I-UPQC 
on the load voltage harmonics is analyzed using sensitivity 
of the load voltage THD to the load current harmonics. It is 
shown that the SAPF transformer leakage reactance must 
be kept as low as possible to reduce the load voltage THD. 
 A new algorithm has been presented for generating 
reference waveforms of the UPQC and the I-UPQC for 
orthogonal voltage injection to avoid phase jump. 
Numerical simulations show that the I-UPQC can perform 
power quality compensation using conventional control 
algorithm if the network voltage does not contain 

significant unbalance or harmonics. 
Appendix A 
The load voltage THD is, 
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where n is the harmonic order. The harmonic components 
of the load voltage caused by the load current voltage drop 
across the series transformer leakage reactance is 
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Supposing VL1 = 1.0 p.u. and substituting (A-2) in (A-1) 
we have 
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If the maximum load voltage permitted THD is 5% 
(THDVL<5.0) and after some manipulations 
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Appendix B 
The load voltage THD sensitivity function in respect to the 
load current is, 
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Substituting (A-4) in (B-1) we have 
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