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Abstract: This paper presents a comprehensive framework 
for retailers’ financial policy which includes both electricity 
and demand response (DR) markets. Due to the existence of 
uncertainties in market environment, retailers may face 
with difficulties for purchasing electric energy from 
suppliers and selling it to their customers. If the selling 
price is not low enough, customers may choose a rival 
retailer. Demand Response Programs (DRPs) are 
introduced as a useful measure to mitigate a part of risks 
associated with these uncertainties. In this paper, a decision 
making framework is proposed which allows retailers to 
concurrently participate in energy market as well as the 
Demand Response Exchange (DRX) market to maximize 
their expected profit. This framework incorporates the 
elastic behavior of customers with respect to the electricity 
prices. Performance of the proposed approach is 
investigated through numerical studies using the Spain 
market data. The results show the efficiency and advantage 
of the proposed methodology. 
 
Keywords: Contract design; Demand response exchange 
market; Electricity market; Retailer’s financial policy 
 
1.  Introduction 
 
A. Literature Review 
In a competitive electricity market, Demand Response 
programs (DRPs) play an important role in improving 
market efficiency [1]. In the strategic plan of International 
Energy Agency (IEA), demand side activities are 
introduced as the first choice in all energy policy decisions, 
because of their potential benefits both at operation and 
economic levels [2]. 
 DRPs invite electricity customers to motivate changes in 
energy consumption. Its potential to mitigate the electricity 
demand has made the use of DRPs more attractive to both 
customers and system operators [3, 4].consumption. In the 
market-based approach, all players are categorized in two 
groups: The first group is DR buyers and the second one is 
DR sellers. DRBs need demand response to improve their 
business and system reliability while, Demand Response 
Sellers (DRSs) are aggregators and customers who sell DR to 
enhance their benefit. This structure creates an efficient market for 
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trading DR. As introduced in [5, 6], DRPs is treated as a 
tradable commodity in the pool-based market, where the 
demand response exchange operator (DRXO) collects both 
the aggregated demand and individualized supply curves. 
Then, it clears the supply and demand at a common price 
[5]. DRPs have implemented in many countries all over the 
world. DR resources are introduced as a measure to 
mitigate the risks of retailers. However, the concept of 
pool-based DR has been recently introduced which is 
named DRX. As above mentioned, DRX needs an operator 
to manage the pool market and find the equilibrium point of 
DR trading. DRX market is recently introduced and has not 
been implemented in real world markets. 
 Economic models of TBRPs and IBPs have been 
addressed in many researches in recent years [7-14]. Ref. 
[7] has discussed methods for customer and demand 
response policies in new electricity markets. Refs. [8, 9] 
have presented an economic model of price responsive 
loads based on the constant value of price elasticity. Market 
clearing programs are discussed in [10], which takes their 
economic benefits into account. In the authors’ previous 
studies [11-14], an economic model of responsive loads has 
been derived. 
 DR beneficiaries include: Transmission System Owners 
(TSO), distributors, retailers, and aggregators. As a result of 
improving the network reliability, a TSO can benefit from 
DRPs [1], distributors can manage network constraints at 
the distribution level by using of DRPs [15]. A retailer 
purchases electricity from the pool market and sells it to 
his/her customers at fixed prices [16, 17]. When retailer 
buys electricity from suppliers, he/she may face with pool 
price uncertainties. Similarly, at the time of selling 
electricity to end-users, he/she may face with the demand 
uncertainty and also the fact that if the prices are not low 
enough, then the customers might change their retailer and 
buy from another entity [16]. Therefore, the retailers must 
manage the supply side contracts as well as the demand 
side. 
 Ref. [3] presents techniques for customers and retailers 
to participate in an electricity market. Profitability of the 
retailers with different price strategies is discussed in [18]. 
The optimal bidding in the power pool market for retailer is 
developed in [19]. Ref. [20] determines the retail electricity 
price using a capital asset pricing model. Interruptible 
contracts of price maker retailers are discussed in [21].  
Refs. [16] and [22], present a stochastic programming 
model to determine the quantity of power which is 
purchased from the pool and forward contracts and also to 
determine the optimal selling prices to have a maximum 
profit from the viewpoint of a retailer. An integrated 
framework is presented in [23] to obtain the sale price to 
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clients based on Time Of Use (TOU) rates and also to 
manage different contracts in order to determine the 
optimal energy procurement strategy within a medium-term 
period. An overview of risk management tools in power 
markets has been provided in [24]. Ref. [25], proposes a 
strategy for optimal price offering to end-users for 
maximizing the profit of a retailer which is based on load 
profile clustering methods. A method for determining the 
optimal demand function for a retailer has been presented in 
[26] which assumes that the retailer purchase electricity 
from both day-ahead and/or the regulation markets and sells 
it to his/her clients through fixed or real-time pricing 
contracts. Based on clustering techniques, an annual 
framework for optimal price offering by a retailer has been 
proposed in [27]. A bi-level programming method for 
solving the medium term decision making problem 
confronted by a retailer has been presented in [28]. In [29], 
a multistage stochastic optimization method was developed. 
Ref. [30] introduces a new portfolio-selection model (PSM) 
which is based on fuzzy value at risk. 
 
B. Aim and Contributions 
There is an important operational issue for any DRX market 
relating to dispatch timing [5]. Since the DRX market 
should be concurrent with the operations of an electricity 
market, the time horizon of DRX must coincide with time 
frame of electricity market. Note that, both time frames 
could be divided into different time scales such as day 
ahead, hour ahead, real time, etc. [5]. However, this paper 
addresses only the day-ahead time scale. As it was 
described in the previous subsection, retailers must 
purchase electricity from the wholesale market at volatile 
rates and sell it to their customers at flat rates. The market 
price uncertainties expose a retailer to financial risks. By 
reducing electricity demand during price spikes period, 
retailers may cover a part of these risks [4, 31]. They also 
should cope with demand uncertainties at the time of selling 
electricity to their clients. This paper provides a decision 
making framework for retailers, which determines their 
optimum level of involvement in electricity pool market 
and also deriving the optimum selling prices for end-users, 
as well as the optimal amount of involvement in demand 
response exchange market. Indeed, this framework allows 
retailers to determine the contract price with their clients 
and also to manage the portfolio of different contracts to 
maximize their expected profit. The reaction of clients to 
the selling price of retailer is modeled through a piecewise 
price quota function. 

 
C. Paper organization 
The rest of the paper is organized as follows. Section 2 
explains retailers’ decision making framework, the 
characterization of end-users and their acceptance function 
and also uncertainties which a retailer faces with them. The 
procedure of problem modeling and formulation is 

discussed in section 3. Section 4 is devoted to numerical 
study. Finally, concluding remarks are drawn in Section 5. 

 
2.  Decision Framework, End-Users Acceptance 
Function and Uncertainty Characterization 
 
Fig. 1 depicts the outline of the proposed framework. The 
important point is concurrent participation of the retailer in 
both electricity and DR market in order to maximize his/her 
financial profit. 
Demand response exchange operator must aggregate and 
sort demand response supply functions from various 
customers with different willingness of participation in 
DRPs. Then, DRXO determines the amount of DR and the 
price of per MWh of DR for each of DRSs.  
 Customers might have an elastic behavior with respect to 
the electricity prices offered by the retailers. If the retailers 
propose higher electricity prices to their clients, the chance 
of accepting these prices by the customers will be low; 
because, under the same conditions, the customer will 
prefer to have contract with other retailers with more 
favorable prices [32]. An acceptance function is defined as

[0,1]  . This function shows the probability that the 
customer will accept the contract with retailers’ suggested 
price. By increasing the price, the probability of acceptance 
will decrease. This means that the acceptance function 
should be decreasing. 
The probability that the clients may choose a rival retailer if 
the selling prices are not low enough can be modeled by 
means of a piecewise price-quota function [16]. The 
retailer’s ability to keep his/her customers has been 
modeled by the price-quota function in [33]. This function 
determines the amount of electricity which a customer 
accepts to buy based on the retailer’s offered price [17]. 
Fig. 2 shows a parametric price-quota curve that is 
considered in this paper. 
 More details regarding the price-quota curve formulation 
is discussed in section 3.A. 
 Electricity retailers are intermediaries because they must 
purchase energy from suppliers and resale it to the final 
customers. Retailers must cope with a price and demand 
risk over a short term time horizon [34]. The main source of 
these uncertainties is the future pool prices. The customers’ 
actual demand is another source of uncertainty which a 
retailer should cope with. Therefore, retailers must forecast 
the spot market prices as well as customers demand. If the 
higher price spikes have been forecasted, retailer might bids 
higher prices to enable more DR capacity. Considering that 
DR has its maximum capacity in the network, this 
constraint will limit the amount of purchased DR. In this 
situation, DR can omit a part of retailer’s financial losses. If 
a retailer does not deliver the required load to customers, 
he/she will be penalized according to the energy not served 
which is not related to DR contracts. 
 Several methods have been introduced so far to forecast 
the demand and price of electricity. ARIMA models, 
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wavelet transform model, and other approaches have been 
used to forecast both the electricity price and the demand 
[35-37]. Also, a hybrid method is developed in [38] which 
forecasts the electricity prices with reasonable error. In this 
paper, the ARIMA method is utilized for load and price 
forecasting. 

 

 
 

Fig. 1.  General view of the proposed framework. 
 
 
 

 
Fig. 2.  Price-quota curve of the electricity supplied by the retailer. 
 
The per unit daily price error is defined as: 
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Also, the per unit daily load error is computed as: 
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3.  Problem Formulation 
 
In this section, the complete mathematical model of the 
problem is described which includes the price-quota curve, 
the objective function and associated constraints. 
 
A. Price-quota Curve Formulation 
The price quota curve can be formulated for each customer 
group in the considered time horizon as follows: 

 

( ) ( , ) ( , ) , ,     cu cu
n n n

k

t t k t k t T n k        (3) 

 
 Taking into account the price-quota function, for each 
hour in the time horizon, one of the price blocks can be 
chosen by the retailer to sell electricity to the consumers. 
So, the value of   in equation (3) will be equal to 1 for the 
selected price, and 0 otherwise. This constraint could be 
stated as the following equation: 
 

 ( , ) 0,1 , , ,    n t k k t T n
    

 (4-a) 

 

( , ) 1, ,    n
k

t k n t T                        (4-b) 

 
B. Objective Function 
The retailers expected net profit is considered as an 
objective function which should be maximized through the 
optimization program. The income and the cost of the 
retailer can be categorized as following: 
 
1) Expected revenue from selling electricity to the end-

users, 
2) Expected costs for buying electricity from suppliers in 

the day-ahead market, 
3)  Forward contract cost, 
4) Expected cost/revenue from participating in the demand 

response exchange market, and 
5) Expected cost/revenue from buying/selling electricity in 

the spot market. 
 Mathematical formulation of each of these income/cost 
resources is described separately at the following. 
 
1) Expected revenue from selling electricity to the end-users 

The expected income from selling energy to the end-users 
for a certain time horizon is defined by equation (5-a): 
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 By considering the price-quota curve which is shown in 
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Fig. 2 and substituting it in the equation (5-a), retailer’s 
income from selling electricity to end-users can be depicted 
as Fig. 3. 
The expected income from selling energy to the end-users 
can also be expressed as the following: 
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Equation (5-b) means that, end-user sells the DR that they 
have bought it. It should be noted that, both forms can be 
used to interpret the relation between DR and electricity 
prices and consequently the amount of retailer’s revenue. 
Here, DR programs are contracts between retailers and 
customers which are traded in a day-ahead market. 
Retailers negotiate with DRSs to purchase DR in DA 
market, because they don’t want to purchase electricity 
from wholesale market in high prices. So, instead of 
providing all forecasted electricity for customers, they 
negotiate with DRSs and cause load reduction with some 
incentives called as DR prices. Consequently, retailers’ 
provided load and also customers purchased electricity are 
equal to   ( , ) ( ) ( ) f DRX

n n nt k l t l t . 

 In addition to incentives which are paid to customers as 

DR prices, corresponding to the amount of load reduction, 

they have cost reduction in their electricity bill. So, 

equation  

(5-a) will be utilized in these paper. More explanations 

about DR effective prices are given in the following of the 

paper. 
 
2) Expected costs for buying electricity from suppliers in the day-
ahead market 

The optimal amount of the purchased electricity from day-
ahead market is determined according to the forecasted 
prices and also the demand of customers. The amount of the 
purchased electricity is one of the decision variables which 
should be optimally determined. The expected cost of 
buying electricity from suppliers is described as the 
following equation:    

(6)  
( ) ( ),f

DA
t

t l t t T     

 
 

Fig. 3.  Retailer’s income from selling electricity. 

 
3) Forward contract cost 

Retailers can purchase a fixed amount of electricity through 
forward contracts. These contracts can consist of: peak, off-
peak, and round-the-clock [23] as stated by equation (7): 
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4) Expected cost/revenue from participating in the demand 
response exchange market 

Demand response has many beneficiaries in the electricity 

market. DR buyers want to improve the reliability of their 

own electricity-dependent businesses and systems. Sellers 

of DR have the capacity to significantly modify their 

electricity demand. In this paper, it is considered that a 

retailer can participate in a pool-based DR market as well 

as the energy market. The cost of purchasing DR from 

DRX market can be stated as: 
 

, ( ) ( ), ,DRX DRX
R n n

n t
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 It should be noted that, by considering a linear curve for 

each demand response sellers’ supply curve, the DR supply 

function can be defined for each group of customers as 

following: 
 

, ,( ) ( ) , ,DRX cu n DRX cu n
n nt a l t b t T n                 (8-b)  

 

where 
,cu na  and 

,cu nb  are constant coefficients. The 

coefficient 
,cu nb  can be considered as ' (1 ) nb   where, 

the coefficient n  is the customers’ type and represents a 

customer’s willingness to participate in DR programs. It 
takes a value between 0 and 1.  By increasing the amount of 

n , the cost of DR decreases because the customer has 

more willingness to participate in DR. Generally, higher 

amounts of 
,cu na  and 

,cu nb  coefficients, denote the less 
willingness of DR sellers to participate in DR programs. On 
the other hand, decreasing the amount of these constant 
coefficients means that DR sellers have more willingness to 
participate in DRPs and so the cost of DR enabling will be 
decreased. 
 
5) Expected cost/revenue from buying/selling electricity in the spot 
market 

According to the difference between the amount of 

purchased electricity from both day-ahead and bilateral 

market and the amount of customers’ actual load in the 

study time horizon, a retailer might sells his/her extra 

purchased electricity in a spot market or also might buy 

extra electricity to settle the end-users. The power that 

should be bought from the spot market is equal to: 
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C. Constraints 
The maximization of the objective function is subjected to 

some constraints as following. 
 
1) Balance 
The total amount of the purchased electricity from suppliers and 
the enabled DR should be equal to the total amount of end-users 
demand. This constraint can be expressed as: 
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2) Bounds on load and prices 

The lower and upper bounds are considered on the amounts 

of the purchased load, DR capacity and all prices in 

electricity and DR markets to make the model more 

realistic. These constraints are stated as following: 
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D. Complete Problem Formulation 
The complete optimization model for maximizing the 

retailer’s expected profit from participating in both 

electricity and DRX markets is developed as equation (17). 

In equation (17), ( )DRX
n t  and ( )db t  are DRSs’ supply 

function and DRBs’ demand function, respectively. 
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4.  Numerical Study 
 
A. Load and Price Forecasting 
The real data of Spain electricity market in 2002 has been 
used in this section for simulation studies [39]. The 
scheduling time horizon is considered to be 24 hours and an 
ARIMA model is utilized for price and load forecasting. 
Figs. 4 and 5 show the results of load and price forecasting. 
Both forecasted and real data are shown in these figures.  
Here, p

de and l
de values are equal to 9.7 and 1.4 percent, 

respectively. 
 

 

B. Data and Assumptions 
As described in previous sections, linear curves are 
considered as DRSs’ supply functions. Three types of 
customer groups and therefore three types of DRSs are 
considered here according to their willingness to participate 
in DR. The common values for 

,cu na  and 
,cu nb  is 

considered to be 1 and 5 for the first DRS, 3 and 8 for the 
second one, and 5 and 10 for the third one, respectively. 
Furthermore, the amount of DR capacity is considered 
equal to 15% (5% for each customer group) of network 
load for each hour. At the next step, the effects of “

,cu na ” 
and “

,cu nb ” variations are evaluated and the results have 
been discussed. 
 For the sake of simplicity and without loss of generality, 
one retailer, one TSO and one distributor are assumed here 
as DR buyers. Linear demand functions are considered for 
DR buyers which are shown in Table 1. 
 The control variable for optimal determination of DRBs 
demand curve is considered to be

dbb . In fact, it is assumed 
that DRBs change their DR demand function using 

dbb . 
The 

dba  coefficients are assumed to be equal to -10 for all 
DRBs. 
An elastic behavior is assumed for customers for modeling 
their reaction when encountered with high prices. The 
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elasticity is defined as the load sensitivity to price changes 
and is divided into self and cross elasticity. More details 
about elasticity can be found in [12]. In this paper, self and 
cross elasticity values are considered as shown in Table 2. 
 
 

 
 

Fig. 4.  Forecasted and real data of electricity price using of an 
ARIMA method. 

 

 
 

Fig. 5.  Forecasted and real data of electricity demand using of an 
ARIMA method. 

 
 

Table 1.  Demand functions for DR. 

DR buyers DR demand function 

Retailer   R R R Ra DR b  

TSO   TSO TSO TSO TSOa DR b  

Distributor DDDD bDRa   

 
 

Table 2.  Elasticity values. 

Self-elasticity Cross elasticity 

-0.2 0.012 

 
 Three stage tariffs will be considered for customer 
groups during a day. Hereinafter, the load elasticity concept 
is utilized to model the customers’ reaction to price 
changes, and the introduced price-quota curve is not 
considered in numerical studies. Also, forward contracts are 
not considered in this section. These assumptions will not 
affect the generality of this study. 
 The amounts of purchased DR by a retailer are 
depending on the differences between electricity forecasted 
prices and selling contracts to consumers. As forecasted 

prices are higher than selling contracts, retailers will be 
more interested to purchase DR. However, if the selling 
contract prices be higher than forecasted prices, they will 
not be persuaded to purchase DRRs.  
 Also, in this work, the minimum up or down times are 
not considered for DR enabling in the network during the 
scheduling period. This means that, DRSs can change their 
supplied DR in each hour within the minimum and 
maximum capacity of DR. This assumption will not reduce 
the generality and accuracy of the proposed method. 
 
C.  Results Analysis 
This subsection provides numerical results and their 
analysis. As mentioned in previous sections, by using of 
proposed framework, retailer determines the optimum 
amount of purchased load from DA market, contract price 
with his/her clients and the amount of purchased DR from 
DRX market in order to maximize his/her expected profit. 
Retailers’ contracts with customers are considered to be as 
three-stage tariffs through a day. According to these 
assumed tariffs, the first time period include hours 2-8; the 
second one include hours 9-18, 23-24 and hour 1; and the 
last period include hours 19-22. These categorizes are 
according to the off-peak, shoulder and peak load times 
during a day. If a retailer proposes high contract prices to 
end-users, he/she may loss his/her customers. So, the 
contract prices should optimally be determined by retailers 
to maximize their expected profit. The contract prices 
between retailer and customers are 32, 56 and 71, 
respectively for each defined period. Also, the retailer 
should determine his/her DR demand curve optimally to 
purchase his/her desired DR from DRX market. The 
optimal amounts of 

Rb  is achieved as shown in Table 3. 
 The amounts of purchased load are shown in Table 4. 
These are total amounts of load which is bought for all 
customer groups. Concurrently, the amounts of enabled DR 
are shown in Table 5. The sum of the values that are shown 
in Tables 4 and 5 is equal to the forecasted load which is 
illustrated in Fig. 5. 
 As it can be seen in Table 5, the amount of traded DR in 
hour 2 is higher than hour 20. Since the difference between 
forecasted and selling prices in hour 2 is comparatively 
more than the difference in hour 20, retailer expose to 
higher price risks in hour 2 in compare to hour 20. By this 
reason, retailer tries to mitigate his/her risk by using of 
enabling more DR in hour 2 than hour 20.Determined 
demand response prices are shown in Table 6 during a 
day.DR prices are varying according to the required DR in 
each hour. Furthermore, customers’ incentives are in 
addition to the cost reduction in their electricity bill because 
of participating in DRPs and the consequent load reduction. 
If, it is assumed that customers buy electricity and resell it 
due to participating in DR, the price of sold load should be 
cumulated with the DR supply price to evaluate DR supply 
effective prices. This means that, if the real value of 
electricity for customers is not taken into account, the sum 
of electricity and above mentioned DR prices is remained 
for customers. Table 7, shows the effective price of DR per 
MWh. 
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The amount of retailer benefit by varying the amount of DR 
capacity is depicted in Fig. 6.  In this figure, ia  and '

ib  
values are considered equal to 8 and 5 for all DR providers. 
The amount of DR capacity is considered to be a 
percentage of network load in each hour.  
 The amount of improvement in retailer’s profit due to 
involving in DR market depends on the customers’ 
willingness to participate in these programs and will vary 
by changing the DRSs’ supply curves. Fig. 7 illustrates the 
expected profit of the retailer versus “

,cu na ” and “
,cu nb ” 

coefficients. In Fig. 7, it is assumed that 
,1 ,2 ,3cu cu cua a a a    and also ,1 ,2 ,3cu cu cub b b b   . 

 Increasing the coefficients of DRSs’ supply curves 
means that DR sellers have less willingness to participate in 
DR and so the price of DR enabling will be higher. 
 It should be mentioned that, since both the electricity and 
DR markets are considered to be day-ahead, retailer acts 
based on his/her forecasts of load and price. In fact, all the 
results of players benefit are the expected profit. For 
investigating the effect of spot market, the real data of load 
and price that have shown in Figs. 4 and 5 should be 
utilized. However, retailer acts according to load and price 
forecasted data to maximize his/her expected benefit. So, 
results of real benefits and therefore the spot market are not 
considered in numerical studies. 
 

Table 3.  The Rb values for each hour during a day. 

Hours Rb  Hours Rb  

2 23.941 13 21.881
3 19.319 14 23.944
8 22.368 20 16.086

11 21.905   

12 21.927 at other 
hours 

_ 

 

Table 4.  The amount of purchased load from DA market. 

Hours 
Purchased 

load from DA 
market (MW) 

Hours 
Purchased load 

from DA market 
(MW) 

1 23.895 13 22.680 

2 23.541 14 21.548 

3 23.416 15 23.909 

4 25.707 16 23.824 

5 25.253 17 23.727 

6 25.098 18 24.097 

7 25.965 19 22.090 

8 24.429 20 21.356 

9 24.472 21 22.733 

10 25.146 22 22.033 

11 22.742 23 23.760 

12 22.803 24 23.836 

Table 5.  Total traded DR during a day. 

Hours 
Total traded 

DR (MW) 
Hours 

Total traded 
DR (MW) 

2 3.282 13 2.964 

3 2.496 14 3.283 

8 3.110 20 1.826 

11 2.971   

12 2.978 
at other 

hours 
0 

 

 

Table 6.  Rated price of DR. 

Hours 
DR price 
($/MWh) 

Hours 
DR price 
($/MWh) 

2 13 13 12 

3 11 14 13 

8 12 20 10 

11 12   

12 12 
At other 

hours 
0 

 
 

Table 7.  Effective price of DR 

Hours 
Effective price 
of traded DR 

($/MWh) 
Hours 

Effective price 
of traded DR 

($/MWh) 
2 45.38 13 67.95 

3 43.38 14 68.95 

8 44.38 20 81.13 

11 67.95   

12 67.95 
At other 

hours 
0 

 
 

 
Fig. 6.  Retailer expected profit by variation of DR penetration in 

the network. 
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 The amount of DRSs’ surplus from participating in DRX 
market is depicted in Fig. 8. Fig. 8 demonstrates the 
customers’ surplus versus their DR supply functions 
coefficients. 
 Increasing the coefficients of DRSs’ supply functions 

will increase the price of DR enabling and therefore will 

decrease the amount of purchased DR in the system. 

Indeed, DRSs can increase their profit in two ways: 

increasing the DR price or increasing the amount of enabled 

DR. However, by increasing the amount of DR supply 

function coefficients, the price of DR is increased and 

consequently the amount of traded DR is decreased. As it 

can be seen from Fig. 8, at first, increasing the price of DR 

is dominant factor and improves DRSs benefit, but when 

DR price tends to be much higher, the traded DR reduction 

as a consequence of higher prices is a dominant factor and 

reduces the profit of the retailer. 
 The market total benefit under the pool-based DR market 

will be higher than the conventional bilateral DR trading 

market. By considering the typical values of “
,cu na ” and “

,cu nb ” coefficients, if a retailer involves in DRX market as 

well as electricity market, it’s benefit will be equal to 

222.328 ($) while if this retailer participates in electricity 

market and also in bilateral DR market, his/her benefit will 

decrease to 157.872 ($), because he/she should be 

responsible alone for DR enabling in DR bilateral market. 

Also, the customers’ benefit is equal to 91.669 ($) and 

4.396 ($) by participating in DR pool-based market and 

bilateral market, respectively. 
 
 

 
Fig. 7.  Retailer’s expected revenue by changing the amount of 

“
,cu na ” and “

,cu nb ” coefficients. 

  

 
Fig. 8.  The amount of customers’ net surplus by participating in 

the DRX market versus the DRSs’ supply curve. 

 
 
5.  Conclusion 
 
In this paper a comprehensive framework is proposed for 
retailers: 1) to determine the optimal contract price with 
clients, 2) to determine the optimal amount of the 
purchased load from day-ahead market, and 3) to determine 
the DR demand curve which should present to DRX 
market. The main aim was to maximize the expected 
benefit of a retailer. A retailer participates in two markets 
simultaneously: electricity market and DR market. The 
elastic behavior of the end-users is considered as their 
reaction to high electricity prices. A case study using of 
Spain market data has been presented to demonstrate the 
usefulness and advantage of the proposed framework. The 
results show that using of this framework can have 
impressive effect on improving the expected benefit of a 
retailer. Furthermore, comparisons between the benefit of 
market players under DR pool and bilateral markets, show 
the advantage of the DRX market, where all players can 
have more benefit from participation in DRPs. Indeed, 
pool-based scheme for DR trading deals DR sellers with 
multiple buyers in a competitive way and therefore causes 
more profit for both group of buyers and sellers. 
 
Nomenclature 
 

Numbers 
 

 

N indicator for the number of customer groups 
K indicator for the number of price blocks 

t  indicator for the number of hours of 
scheduling time horizon 

m  indicator for the number of load and price 
intervals 

db  
indicator for the number of Demand 
Response Buyers (DRB) 

fc  indicator for the number of forward contracts 

 
Sets 

 

 set of price blocks 

 set of group of end-users 
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  set of demand response buyers 

fN  
set of forward contracts 

 
Real 
Variables 

 

( , )cu
n t k  

the selling electricity price of the kth block 
to customer group n at hour t ($/MWh) 

DRX
nl  

the quantity of sold DR by nth customer group 
(MW) 

DAl  
the amount of purchased load from day-
ahead (DA) market (MW) 

,
DRX

db nl  The amount of purchased DR from nth 
DRS by dbth DRB (MW) 

cuER  
retailer expected revenue from selling 
electricity to customers ($) 

RB  the expected benefit of retailer ($) 
dba  first coefficient of DR demand functions 

($/MW2h) 
dbb  second coefficient of DR demand 

functions ($/MWh) 
dbDR  

the amount of purchased DR by dbth buyer 
(MW) 

forwardp  
the amount of load in fcth forward contract 
at hour t (MW) 

p*
 price of DRX market equilibrium point 

($/MWh) 
x*

 quantity of DRX market equilibrium point 
(MW) 

( , )n t k  portion of load that the customer group n 
buy form the retailer at hour t if the retailer 

offer electricity price ( , )cu
n t k  

forwardC  cost of forward contracts 
 
Binary 
variables 

 

( , )n t k  binary variable which is equal to 1 if the 
selling electricity price for the customer 
group n at hour t is equal to the price of the 
kth block, and zero otherwise. 

 
Constants  

cu
np  the amount of nth customer group load 

(MW) 
f

nl  forecasted load of customer group n (MW) 

( )f t  forecasted price of spot market ($/MWh) 

T  scheduling time horizon 
,cu na , 
,cu nb  

the coefficients of nth Demand Response 

Seller (DRS) supply curve (
,cu na  in 

[$/MW2h]and 
,cu nb  in [$/MWh]) 

n  customers’ type 

( )a
nl t

 
customers’ actual load at hour t (MW) 

( )s t
 

actual price of spot market at hour t 
($/MWh) 

p
de

 
the per-unit daily price error 

l
de

 
the per-unit daily load error 


 

the price of fcth forward contract at hour t 
($/MWh) 

,maxDRX
nl maximum DR capacity of nth DRS 

 
Functions  

n  acceptance function of customer group n 

db  DR demand function from dbth buyer 

DRX
n  DR supply function of nth seller 
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