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Abstract: Design of SiNx/SiOx single layer antireflection 
coating has been developed which tunes both the layer 
thickness and the deposition gas flow ratio. The method is 
built up for achieving maximum available carrier 
generation rate in single crystalline Silicon solar cells. The 
carrier generation rate estimation is based on internal and 
external quantum efficiency calculations. While the internal 
efficiency describes photons transport to the substrate and 
internal efficiency is related carrier generation mechanism. 
In this report the effect of optical reflection and absorption 
on external efficiency is widely studied. The model is based 
on wideband photonic parameters of silicon nitride/oxide 
which are deposited with PECVD machine under different 
deposition criteria. Effect of gas flow ratio on the dielectric 
refractive index and extinction factor are investigated by 
wideband optical measurements. For silicon nitride anti 
reflection coating, the optimized coating consists of 63 nm 
SiNx layer with Silane to Ammonia gas ratio of 4. The 
estimated carrier generation rate is 1.88×1017 cm-2s-1. The 
best possible results for silicon oxide has been derived with 
88.9 nm SiOx with Silane to Nitrous Oxide gas ratio of 1. In 
this case the carrier generation rate will be 1.83×1017  
cm-2s-1. The proposed anti reflection coatings are deposited 
on single crystal silicon substrate. The measured optical 
reflection coefficients are in very good agreement with the 
developed theory. 
 
Keywords: Anti reflection coating, solar cells, PECVD, 
optical index. 
 
1. Introduction 

The high refractive index of the silicon substrate leads to 
high incident light reflection which significantly decreases 
power capability of the solar cells. The reflectivity of solar 
cells surface could be minimized using antireflection 
coating. A simple approach for thickness calculation of a 
single layer anti-reflection coating is the quarter wave 
coating. It means that, if the dielectric thickness is chosen 
so that the incident wave travels one quarter of the 
wavelength, the reflected waves from dielectric top and 
bottom surfaces will be out of phase, thus they would have 
destructive interferencewhich terminatesthe reflection [1]. 
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 As the refractive index and wavelength in dielectric 
materials are functions of incident wavelength, this 
technique merely vanishes the reflection for a certain 
wavelength. For a broadband optimization of reflection, 
total reflection over solar spectrum should be considered 
for achieving minimum reflection [2] or maximizing the 
total carrier generation rate in the semiconductor substrate. 
 Using Plasma Enhanced Chemical Vapor Deposition 
(PECVD) technique provides accurate options for altering 
deposition parameters such as gas flow rates, temperature 
and RF power. The gas flow rates determine nitrogen per 
silicon content in SiNx or oxygen per silicon in SiOx films, 
which causes significant photonic effects. This 
phenomenon could be employed for designing high 
efficiency anti reflection coating layers. These coatings also 
improve cell passivation by adding large amount of atomic 
hydrogen [3-5]. 
 
2.  Photonic Parameters  

The schematic view if the structure is presented in Fig. 1. 
The efficiency of the solar cell is related to light 
transmission through ARC layers.  
 

 

 
 
 
 
 
 

Fig. 1.  Schematic view of the structure presenting opto-
geometrical parameters. 

 

 
 The Transmission coefficient, T(λ), defines the portion of 
the incident light power that is transmitted to the silicon 
substrate and can be calculated as follows [9]; 
 T(λ) = [1 − R(λ)] × A(λ) (1) 

 
where R(λ) and A(λ) are reflectivity and absorptivity 
coefficients for a single layer anti reflection coating 
respectively. Based on classic wave equations, the 
reflectivity can be calculated as follows [10]; 
 R = rଵଶ + rଶଶ + 2rଵrଶcos2θଵ1 + rଵଶrଶଶ + 2rଵrଶcos2θଵ 

(2) 

 

Air (n1) 
Silicon Substrate (n3, k3)                d3 Anti-Reflection Coating (n2, k2)        d2    
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In this equation ݎ௜ = (݊௜ − ݊௜ାଵ) (݊௜ + ݊௜ାଵ)⁄  represent the 
reflection factors for orthogonal incident waves at the 
interfaces and ߠଵ = ଶ݊ଶ݀ߨ2 ⁄ߣ  denotes the phase shift for 
the light traveling in dielectric layer. The subscripts 1, 2 
and 3 are assigned for air, dielectric coating, and the 
substrate respectively. 
 According to Beer’s law, the absorptivity, A(λ) =eିସ஠୩మୢమ ஛⁄  defines the light attenuation in the dielectric 
coating. In all equations ni and ki denote real and imaginary 
parts of the dielectric refractive index and d is the thickness.  
Assuming a specular  front surface substrate the total path 
of the travelling photon is assumed 2d3 where d3 is the 
substrate thickness, beside, the back surface is simply 
considered as a perfect reflector. Consequently the 
absorption probability could be calculated as follows [6]; 
 AP(λ) = 4πkଷ4πkଷ + λଶୢయ

 
(3) 

 
 In conclusion, the external optical efficiency which is the 
ratio of the absorbed light power to the incident light can be 
calculated as follows; 
 
ηୣ୶୲ = [1 − R(λ)] × A(λ) × AP(λ)  (4) 

 
 Up to photon energies of 3eV, the internal quantum 

efficiency is unity, hence each incident photon with energy 

greater than the band gap, can produce an electron hole 

pair. The number of generated electron hole pairs increases 

by factor of  1 + 33.5(0.45µ݉ −  ଶ. The additional pairs(ߣ

are created by impact ionization [10]. Considering this 

phenomenon, the electron hole pair generation rate per area 

of the solar cell can be presented by 
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where ߣ௘௙௙(µ݉) ≈ 1.24 ⁄(ܸ݁)௚ܧ  is the effective 
wavelength for the semiconductor material with the band 
gap of Eg and I(λ) represents solar intensity according to the 
Air Mass 1.5 standard. The parameters h and c represent 
Plank’s constant and the speed of light.   
 The equation (5) has been examined for several 
dielectric thicknesses and different deposition parameters to 
find optimum values which maximize overall EHP 
generation rate. 
 

3.  SiNx/SiOx Deposition and Measurements 

The SiOx/SiNx films were deposited using PlasmaPro 
System100 PECVD machine from Oxford Instruments. 
This technique uses appropriate gaseous mixtures of Siliane 
(5% SiH4/N2) and Nitrous oxide (N2O) or Ammonia (NH3). 
The gas ratio have been altered while other deposition 
parameters were kept constant. The gas ratio factor is 
defined as Silane flow which is divided by Ammonia or 
Nitrous Oxide. Hence the deposition gas ratio alters the 
portion of silicon in SiOx/SiNx films. It provides an 
interesting option for tuning the factor ‘x’ and accordingly 
photonic specifications of the materials. Figure 2 shows 
broad band measured refractive index and extinction factor 
for SiOx and SiNx while the gas ratio is varying from 4 to 7 
for SiNx and 1 to 4 for SiOx 
  Dielectric function has been measured using optical 
ellipsometer from Sopra in energy band of 1-5 eV. The 
ellipsometry measures the change in polarization state of 
the incident wave which is affected by the sample refractive 
index. This measuring method provides the parameter ρ, 
which is ratio of the reflectivity for p-polarized light 
divided by the reflectivity for s-polarized light. 
ߩ  = tan ߰ × ݁௝௱ (6) 

 
 The measured data, ݊ܽݐ ߰ and ܿݏ݋  were analyzed by ,߂
WinElli software acquiring the refractive index, extinction 
factor and the film thickness. 
 
4.  Optimization Results 

The optimization techniqueis applied for a single layer 
silicon oxide/nitride anti reflection coatings with examining 
wide range of important parameters. The optimum 
thickness is varying whileSiH4/NH3 and SiH4/N2O gas flow 
ratio changes. Table 1 represents the optimization results 
when the method has been applied for oxide and nitride 
layers respectively. 
 It can be seen that nitride layers show better overall 
optical efficiency. Table 2 presents detailed deposition 
parameters for the best possible antireflection coatings.   
Fig. 3 presents the external optical efficiency versus 
wavelength for different gas combinations. The spectrum is 
summarized from 300 nm to 900 nm. 
 The reflectivity coefficients are presented in Fig. 4. The 
dielectric thickness is selected 63 nm for SiNx and 88 nm 
for SiOx which are optimized values for achieving 
maximum available carrier generation rate. The 
spectrometric measured data are plotted as well which show 
good matching between simulated and measured values. 
The reflectivity of the coated samples has been measured 
using Perkin-Elmer UV/VIS spectrometer in wavelength 
range of 300-900 nm. 
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Fug. 2.  Refractive index over wavelength for different gas ratios for SiOx (a) and SiNx (b); Extinction factors for SiOx (c) and SiNx (d). 

 
 

Table 1.  Effect of SiOx/ SiNx deposition gas ratio on optimum anti reflection 
 coating thickness and available carrier generation rate. 

 

 

  

 

(a) (b) 

  

(c) (d) 

Material Gas Ratio 
Optimum 

Thickness(nm) 

Available EHP  

Generation Rate (×1017/cm-2.s-1) 

SiOx 

1 88.9 1.8343 

2 78.9 1.8190 

3 61.5 1.6063 

4 45.3 1.3012 

SiNx 

4 63.2 1.8818 

5 60.1 1.8269 

6 57.1 1.7711 

7 54.2 1.7163 

400 600 800 1000
1.5

1.6

1.7

1.8

1.9

2

Lambda (nm)

R
ef

ra
ct

iv
e 

In
de

x

 

 

SiH4/N2O = 1
SiH4/N2O = 2
SiH4/N2O = 3
SiH4/N2O =4

400 600 800 1,000
1.8

1.9

2

2.1

2.2

Lambda (nm)

R
ef

ra
ct

iv
e 

In
de

x

 

 

SiH4/NH3 = 4
SiH4/NH3 = 5
SiH4/NH3 = 6
SiH4/NH3 = 7

400 600 800 1,000

10-5

10-4

10-3

10-2

10-1

Lambda (nm)

Ex
tin

ct
io

n 
Fa

ct
or

 

 

SiH4/N2O = 1
SiH4/N2O = 2
SiH4/N2O = 3
SiH4/N2O =4

300 400 500 600 700 800 900 1000 1100

10-2

10-1

Lambda (nm)

Ex
tin

ct
io

n 
Fa

ct
or

 

 

SiH4/NH3 = 4
SiH4/NH3 = 5
SiH4/NH3 = 6
SiH4/NH3 =7



4 Journal of Electrical Systems and Signals, Vol. 1, No. 2, 2013 

 

 
 

(a) (b) 

Fig. 3.  Total optical efficiency for different gas ratios. The coating thickness is optimized for the maximum available carrier generation 
rate; (a) SiNx and (b) SiOx dielectric layers. 

 
 

Table 2.  SiOx and SiNx Deposition Conditions 

Deposition Parameter SiNx SiOx 

Temperature 400oC 400oC 

RF Power 40W 34W 

Pressure 1000 mTorr 1000 mTorr 

SiH4 Flow 200 sccm 200 sccm 

N2O Flow 0 200 sccm 

NH3 Flow 50 sccm 0 

Deposition Rate 1.49 nm/s 0.27 nm/s 

Deposition Time 42 seconds 326 seconds 

Thickness (estimated) 63nm 88nm 

Thickness (measured) 65nm 90nm 

 

 
Fig. 4.  Measured and simulated reflectivity coefficient forSiNx ARC with gas ratio of 4 and thickness  

of 63nm, SiOx ARC with gas ratio of 1 and thickness of 88nm. 
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