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Effects of Gas Flow Ratio on Optical Propertiesof PECVD Grown
Single Layer Anti-reflecting Coating for Silicon Solar Cells
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Abstract: Design of SiN,/SiOy single layer antireflection
coating has been developed which tunes both the layer
thickness and the deposition gas flow ratio. The method is
built up for achieving maximum available carrier
generation rate in single crystalline Silicon solar cells. The
carrier generation rate estimation is based on internal and
external quantum efficiency calculations. While the internal
efficiency describes photons transport to the substrate and
internal efficiency is related carrier generation mechanism.
In this report the effect of optical reflection and absorption
on external efficiency is widely studied. The model is based
on wideband photonic parameters of silicon nitride/oxide
which are deposited with PECVD machine under different
deposition criteria. Effect of gas flow ratio on the dielectric
refractive index and extinction factor are investigated by
wideband optical measurements. For silicon nitride anti
reflection coating, the optimized coating consists of 63 nm
SiN, layer with Silane to Ammonia gas ratio of 4. The
estimated carrier generation rate is 1.88x10' cm™s”. The
best possible results for silicon oxide has been derived with
88.9 nm SiO, with Silane to Nitrous Oxide gas ratio of 1. In
this case the carrier generation rate will be 1.83x10"
em™s™. The proposed anti reflection coatings are deposited
on single crystal silicon substrate. The measured optical
reflection coefficients are in very good agreement with the
developed theory.

Keywords. Anti reflection coating, solar cells, PECVD,
optical index.

1. Introduction

The high refractive index of the silicon substrate leads to
high incident light reflection which significantly decreases
power capability of the solar cells. The reflectivity of solar
cells surface could be minimized using antireflection
coating. A simple approach for thickness calculation of a
single layer anti-reflection coating is the quarter wave
coating. It means that, if the dielectric thickness is chosen
so that the incident wave travels one quarter of the
wavelength, the reflected waves from dielectric top and
bottom surfaces will be out of phase, thus they would have
destructive interferencewhich terminatesthe reflection [1].
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As the refractive index and wavelength in dielectric
materials are functions of incident wavelength, this
technique merely vanishes the reflection for a certain
wavelength. For a broadband optimization of reflection,
total reflection over solar spectrum should be considered
for achieving minimum reflection [2] or maximizing the
total carrier generation rate in the semiconductor substrate.

Using Plasma Enhanced Chemical Vapor Deposition
(PECVD) technique provides accurate options for altering
deposition parameters such as gas flow rates, temperature
and RF power. The gas flow rates determine nitrogen per
silicon content in SiN, or oxygen per silicon in SiOy films,
which causes significant photonic effects. This
phenomenon could be employed for designing high
efficiency anti reflection coating layers. These coatings also
improve cell passivation by adding large amount of atomic
hydrogen [3-5].

2. Photonic Parameters

The schematic view if the structure is presented in Fig. 1.
The efficiency of the solar cell is related to light
transmission through ARC layers.
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Fig. 1. Schematic view of the structure presenting opto-
geometrical parameters.

The Transmission coefficient, 7(4), defines the portion of
the incident light power that is transmitted to the silicon
substrate and can be calculated as follows [9];

T = [1-RMW]xAM) Q)

where R(4) and A(J) are reflectivity and absorptivity
coefficients for a single layer anti reflection coating
respectively. Based on classic wave equations, the
reflectivity can be calculated as follows [10];
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In this equation r; = (n; — n;4q)/(n; + ny4q) represent the
reflection factors for orthogonal incident waves at the
interfaces and 6, = 2mwd,n,/A denotes the phase shift for
the light traveling in dielectric layer. The subscripts 1, 2
and 3 are assigned for air, dielectric coating, and the
substrate respectively.

According to Beer’s law, the absorptivity, AQA) =
e~4mk2d2/2 defines the light attenuation in the dielectric
coating. In all equations »; and k; denote real and imaginary
parts of the dielectric refractive index and d is the thickness.
Assuming a specular front surface substrate the total path
of the travelling photon is assumed 2d; where d; is the
substrate thickness, beside, the back surface is simply
considered as a perfect reflector. Consequently the
absorption probability could be calculated as follows [6];

_ 41k, 3)

In conclusion, the external optical efficiency which is the
ratio of the absorbed light power to the incident light can be
calculated as follows;

Nexe = [1 =R x AQQ) x APQ) 4)

Up to photon energies of 3el, the internal quantum
efficiency is unity, hence each incident photon with energy
greater than the band gap, can produce an electron hole
pair. The number of generated electron hole pairs increases
by factor of 1+ 33.5(0.45um — A)%. The additional pairs
are created by impact ionization [10]. Considering this
phenomenon, the electron hole pair generation rate per area
of the solar cell can be presented by
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where  Arr(um) =~ 1.24/E;(eV) is the effective

wavelength for the semiconductor material with the band
gap of E, and /(7) represents solar intensity according to the
Air Mass 1.5 standard. The parameters /4 and ¢ represent
Plank’s constant and the speed of light.

The equation (5) has been examined for several
dielectric thicknesses and different deposition parameters to
find optimum values which maximize overall EHP
generation rate.
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3. SIN,/SIO, Deposition and M easur ements

The SiO,/SiN, films were deposited using PlasmaPro
System100 PECVD machine from Oxford Instruments.
This technique uses appropriate gaseous mixtures of Siliane
(5% SiH4/N;) and Nitrous oxide (N,O) or Ammonia (NHj).
The gas ratio have been altered while other deposition
parameters were kept constant. The gas ratio factor is
defined as Silane flow which is divided by Ammonia or
Nitrous Oxide. Hence the deposition gas ratio alters the
portion of silicon in SiO,/SiN, films. It provides an
interesting option for tuning the factor x’ and accordingly
photonic specifications of the materials. Figure 2 shows
broad band measured refractive index and extinction factor
for SiO, and SiN, while the gas ratio is varying from 4 to 7
for SiN, and I to 4 for SiO,

Dielectric function has been measured using optical
ellipsometer from Sopra in energy band of /-5 eV. The
ellipsometry measures the change in polarization state of
the incident wave which is affected by the sample refractive
index. This measuring method provides the parameter p,
which is ratio of the reflectivity for p-polarized light
divided by the reflectivity for s-polarized light.

p = tani x e/? (6)

The measured data, tany and cos 4, were analyzed by
WinElli software acquiring the refractive index, extinction
factor and the film thickness.

4. Optimization Results

The optimization techniqueis applied for a single layer
silicon oxide/nitride anti reflection coatings with examining
wide range of important parameters. The optimum
thickness is varying whileSiH4/NH; and SiH4/N,0 gas flow
ratio changes. Table 1 represents the optimization results
when the method has been applied for oxide and nitride
layers respectively.

It can be seen that nitride layers show better overall
optical efficiency. Table 2 presents detailed deposition
parameters for the best possible antireflection coatings.
Fig. 3 presents the external optical efficiency versus
wavelength for different gas combinations. The spectrum is
summarized from 300 nm to 900 nm.

The reflectivity coefficients are presented in Fig. 4. The
dielectric thickness is selected 63 nm for SiN, and 88 nm
for SiO; which are optimized values for achieving
maximum available carrier generation rate. The
spectrometric measured data are plotted as well which show
good matching between simulated and measured values.
The reflectivity of the coated samples has been measured
using Perkin-Elmer UV/VIS spectrometer in wavelength
range of 300-900 nm.
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Fug. 2. Refractive index over wavelength for different gas ratios for SiO, (a) and SiN, (b); Extinction factors for SiO, (c¢) and SiN, (d).

Table 1. Effect of SiO,/ SiN, deposition gas ratio on optimum anti reflection
coating thickness and available carrier generation rate.

. ] Optimum Available EHP
Material GasRatio ) ] 7o 1
Thickness(nm) | Generation Rate (x10~'/cm™.s™)
1 88.9 1.8343
_ 2 78.9 1.8190
SOy
3 61.5 1.6063
4 453 1.3012
4 63.2 1.8818
_ 5 60.1 1.8269
SiNy
6 57.1 1.7711
7 54.2 1.7163
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Fig. 3. Total optical efficiency for different gas ratios. The coating thickness is optimized for the maximum available carrier generation
rate; (a) SiN, and (b) SiO, dielectric layers.

Table 2. SiO, and SiN, Deposition Conditions

Deposition Parameter SiNx SiOx
Temperature 400°C 400°C
RF Power 40W 34W
Pressure 1000 mTorr 1000 mTorr
SiH, Flow 200 sccm 200 sccm
N,O Flow 0 200 sccm
NH; Flow 50 sccm 0
Deposition Rate 1.49 nm/s 0.27 nm/s
Deposition Time 42 seconds 326 seconds
Thickness (estimated) 63nm 88nm
Thickness (measured) 65nm 90nm
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Fig. 4. Measured and simulated reflectivity coefficient forSiN, ARC with gas ratio of 4 and thickness
of 63nm, SiO, ARC with gas ratio of 1 and thickness of 88nm.
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5. Conclusion

Design of PECVD SiN,/SiOy single layer antireflection
coating has been developed which tunes both the layer
thicknesses and the deposition gas flow ratio. The
optimized coating consists of 63nm SiN, layer with Silane
to Ammonia gas ratio of 4 or 88nm SiO, with Silane to
Nitrous Oxide gas ratio of /. The estimated carrier
generation rate would be 7.88%x710"7 cm™s™ and 1.83x10"
em?s” respectively under AMI.5 solar spectrum. The
proposed antireflection coatings are deposited using
PECVD technique, the exact layers thickness was
measured 67nm and 90nm. The measured reflectivity
coefficients are in very good agreement with simulated
values especially in visible and infra red spectrum. It can be
vividly seen that silicon nitride single layer antireflection
coatings shows better optical performance with proper
passivation characteristics.
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