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Abstract. Node selection and resource management are 
two key issues in cognitive radio networks. Due to channel 
impairments in wireless networks, cooperative spectrum 
sensing is used in orthogonal frequency division multiple 
access (OFDMA) cognitive radio networks. The problem is 
designed to maximize the system throughput under the 
constraints of power budget and detection performance. 
This problem is solved using convex optimization methods 
and the priority of nodes for participating in sensing and 
transmission processes and also the optimal power of 
transmission nodes are obtained. For implementing this 
solution, three algorithms are proposed. The results reveal 
the benefits of the proposed algorithms in terms of 
throughput and sensing performance. 
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1. Introduction 

Due to inefficient use of the spectrum in static spectrum 
access which allocates the spectrum to licensed users with 
sparsely utilization in temporal and geographical 
dimensions, dynamic spectrum access (DSA) has been 
introduced as the promising solution for efficient utilization 
of the scarce radio resources. 

Cognitive radio (CR) based on DSA has emerged as an 
intelligent wireless technology to expand the spectrum 
utilization by allowing the unlicensed or secondary users 
(SUs) to access the spectrum opportunities without affecting 
the transmissions of licensed or primary users (PUs) [1], [2]. 

CR relies on spectrum sensing to search for unused 
spectrum which is known as the spectrum hole. In spectrum 
sensing, probability of detection and probability of false 
alarm are two main metrics which are used for evaluation 
the detection performance. The probability of detection 
means the probability of correct detection the PU's presence 
when it is active actually. The probability of false alarm 
denotes the probability of detection the PU's presence when 
the band is free actually. 

 
 
Manuscript received February 2, 2014; revised July 22, 2014; 
accepted August 15, 2014. 
P. Shaghaghivand and A. Ebrahimzadeh are with the Department 
of Electrical  and Computer Engineering, Noshirvani  University 
of Technology, Babol, Iran. M. Najimi is with University of 
Science and Technology of Mazandaran (USTM) Behshahr, Iran, 
and B. Abbasi is with Tarbit Modares University, Tehran, Iran. 
The corresponding author's e-mail is: pariashaghaghivand@yahoo 
.com. 

 

Due to user uncertainty and channel impairments such as 
multipath fading and shadowing, cooperation with other 
users is employed for increasing the accuracy of sensing 
process and improving the detection performance. 
Cooperative spectrum sensing is done in two phase. In the 
first one, several secondary users sense the spectrum and 
check the presence of the primary user individually. In the 
second phase, all of the cooperative users send their results 
to fusion center (FC) for making the final decision about the 
presence of primary users [3], [4]. One of the most 
important factors affecting the performance of cooperative 
sensing, is the proper choice of users participating in the 
sensing of specified band [5].  

In [6], it has been shown that employing a certain number 
of users with higher signal to noise ratio (SNR) rather than 
using all of the users for cooperation, achieves the optimum 
values of probability of detection and probability of false 
alarm.   

The authors in [7] choose the sensing users based on 
detection performance. For this purpose, three methods 
Simple Counting (SC), Partial-Agreement Counting (PAC), 
and Collision Detection (CD) are proposed.  In SC, the users 
with the higher number of PU's presence decision, are 
selected for cooperation. In PAC, the users with higher 
agreement with FC are selected and finally in CD, the users 
with higher number of correct PU's detection when FC 
decides wrongly, are selected for cooperation. In [6] the 
authors propose practical sensing node selection for 
cooperative spectrum sensing in the case that malicious 
users are existed in the network. To achieve this goal, they 
define the consistency metric to determine the consistencies 
between the sensing results of unknown SUs and trusted 
SUs. The SUs with the highest value of this metric are used 
for cooperation.   

After determining the unused frequency bands in sensing 
process, the efficient transmission technique is required to 
fill these free bands. To achieving this goal, OFDM 
technique is an appropriate candidate for cognitive radio 
networks. In OFDM, the band is divided into several 
narrower bands which called subcarriers. All of the 
subcarriers in OFDM are employed for transmitting the 
symbols of a single user. Thus, OFDM cannot be used for 
resource sharing among multi users. So, it should be 
combined with multiple access techniques such as TDMA 
(OFDM-TDMA), FDMA (OFDMA) and CDMA (OFDMA-
CDMA) to combat this issue [8]. Among these techniques, 
OFDMA is most common. In OFDMA, a subcarrier (or a 
group of subcarriers) can be assigned to each one of the 
users based on their priority. By using OFDMA in cognitive 
radio networks, the occupied subcarriers can be modulated 
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with zero and the appropriate signal can be adaptively 
shaped for avoiding the interference to PUs. One of the 
other advantages of OFDMA in CR networks is its 
flexibility in resource allocation. Many works address the 
problem of power and subcarrier allocation in OFDMA CR 
networks to achieve system improvement in terms of 
throughput, battery life, interference, and so on. In 
subcarrier allocation, by benefiting from independent 
channel condition for multi users (i.e. multiuser diversity), 
each subcarrier or sub channel (a group of subcarriers) can 
be assigned to the user with the highest priority. In power 
allocation, the power level for each subcarrier is obtained to 
optimize the specified objective function [9].    

In [10], the power level is proportional to the SNR of 
subcarriers. This method is called water filling that allocates 
more power to the subcarriers with higher SNR to maximize 
the system throughput subject to the constraint of total 
transmit power. 

According to [11], water filling method is not 
appropriate for power allocation in OFDM system because 
the protection of PUs is not considered. Thus, the 
optimization problem is designed that keeps the sum of the 
interference power to PUs, below the certain constant 
threshold. Then three algorithms, Max-Rate subcarrier 
allocation algorithm (MaxR-SAA), Min-Interference 
subcarrier allocation algorithm (MinI-SAA) and Fair-Rate 
subcarrier allocation algorithm (FairR-SAA), are proposed. 
After that, optimal power of each subcarrier is calculated 
and compared with three suboptimal algorithms named 
distance based step power allocation, interference based step 
power allocation, and modified equal power allocation. But 
this paper separates the subcarrier and power allocation and 
do them in two stages. 

In [12], the interference threshold is considered variable 
and is obtained in terms of primary links SNR in two cases 
perfect channel state information (CSI) and imperfect CSI. 
Then the authors present an optimal algorithm for jointly 
subcarrier and power assignment in which the priority of 
users for subcarrier allocation is determined based on the 
compromise between capacity and fairness and the power of 
users in each subcarrier is obtained via solving the problem 
with Lagrange method.  

In aforementioned papers, the authors do not consider 
spectrum sensing and only the power and subcarrier 
allocation have been discussed for given available 
frequency bands for secondary users. 

In [13], the authors aim at finding the optimal power and 
spectrum sensing time for spectrum efficiency maximization 
under the constraints of average BER threshold, total 
transmit power budget, probability of  detection and 
probability of false alarm in the ultra-wideband cognitive 
radio networks. For solving this problem, the group power 
allocation algorithm is used in which the subcarriers are 
classified into groups and the power is loaded on these 
groups by greedy algorithm at first. Then the bits are 
assigned on the subcarriers in each subcarrier group by 
equal power allocation. More, the authors prove that finding 
the optimal spectrum sensing time is very complex, hence 
the numerical method is employed to find this optimum 
value. 

In [14], first the optimum number of SUs for cooperation 
is obtained to minimize the error probability. Then it is 

shown that for specified sensing time, the throughput has 
been maximized and also, the maximum value of 
throughput is decreasingly function in terms of the 
optimum number of cooperative SUs. But in this paper, 
single channel setting is considered and also it is not 
determined which SUs participate in sensing the channel. 

The purpose of this paper is to select the appropriate 
nodes for sensing and transmission operations and also 
assign the optimal power level to the transmission nodes, in 
order to maximize the system throughput with 
consideration of detection performance and total power 
budget constraints. In this work, energy detection scheme is 
applied for identifying the existence of primary users in 
licensed bands because it does not need to any prior 
knowledge and has low complexity in computation and 
implementation. Also, OR fusion rule is employed for 
combining the decisions of cooperating SUs in FC. 

The rest of the paper is organized as follows. In Section 2, 
system model is expressed. Section 3 brings up the problem 
formulation and also the mathematical solution of this 
problem is discussed in this section. Section 4 presents our 
proposed algorithm for solving the problem. The 
performance of our algorithm will be shown in simulation 
results in Section 5.  Finally, the conclusion is presented in 
Section 6. 

 
2. System Model 

We consider a cognitive radio network with N secondary 
users, a FC, a primary base station(PU-BS),a secondary base 
station(SU-BS) and K orthogonal frequency bands (OFDM 
subcarriers). Each subcarrier is licensed for a PU(hence 
there are K PUs). 

At first, the SUs should sense the subcarriers to know 
which one of them is free. As mentioned before, the energy 
detection scheme is used for detecting the free subcarriers. 
For this purpose, the energy of received signal should be 
calculated in each one of sensing users. 

If , ( )k ny i be the discrete received signal of subcarrier k

that observed by node n , two hypotheses is defined as 
follows: 
 
 0 , ,: ( ) ( )k n k nH y i u i

   
1,..., si f  (1) 

 
This hypothesis suggests that the primary user is not 

present in the band and thus the received signal is equal to 
channel noise. In (1), ,k nu  is the independent and identically 

distributed (i.i.d) Gaussian noise on subcarrier k which has 

zero mean and variance 2
u . is the sensing time duration,

sf is sampling frequency, hence sf denotes the number of 

samples. 
When the primary user is present in the band, the second 

hypothesis will be expressed as follows: 
 
 1 , , , ,: ( ) ( ) ( )k n k n k n k nH y i h s i u i     1,..., si f  (2) 

 
where ,k ns is a primary signal on the subcarrier k that 

observed by sensing node n and it is assumed to be a i.i.d 
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random process with zero mean and variance
,

2
k ns . Also,

,k ns and ,k nu are assumed independent from each other. ,k nh

is the channel gain between primary user k  and node n  
which is modeled due to path loss and shadowing effects in 
this work. 
 

,

20
, ,10

k nL

k n k nh h   

 

(3) 

 

where ,k nh is complex Gaussian random process (Rayleigh 

fading) with zero mean and variance 1. ,k nL  includes the 

path loss and shadowing components. The free space path 
loss component of ,k nL  for a line of sight (LOS) channel is 

given by:  
 

2
,

,

( )
4

PL
k n

k n

G
l

d




  
 
(4) 

 

Here,   is the wavelength and equal to 
c

c

f
 that c is speed 

of light and cf  is carrier frequency, G is the product of the 

transmit and receive antenna gain. In our work we assume
1G  , ,k nd is the distance between primary user k and node 

n. According to (4), ,k nL is obtained as follows: 

 

, ,10log( )PL
k n k nL l X   

 

(5) 

 
X is a Gaussian random variable (in dB) with zero mean 

and variance 2
X that models the shadowing effect. 

Under the hypothesis 1H , the signal to noise ratio (SNR) 

of primary user k  that measured by node n  is defined as 
follows: 
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2 2
,

, 2
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h 
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
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(6) 

 
Similarly the SU uplink channel is modeled as follows: 
 

20
, ,10

UP
nL

UP UP
k n k nh h   

 

(7) 

 

Similarly ,
UP
k nh is a Rayleigh fading part with zero mean 

and variance 1.The shadowing and path loss components are 

modeled in UP
nL which is expressed as follows. 

 

20 log( )
4

UP UP
n

n

L X
d




   
 
(8) 

 
where nd is denotes the distance between node n  and SU-

BS. X୙୔ is a Gaussian random variable with zero mean and 
variance σଡ଼౑ౌ

ଶ  and denotes the shadowing effect [15], [16]. 

The energy of received signal in node n  is given by: 

,
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f
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(9) 

 
This energy is compared with the specified threshold   

and based on this, one bit hard decision ,k nD  is sent to FC 

for making decision on PU's presence. , 1k nD  represents 

the PU's presence in subcarrier k and , 0k nD  indicates that 

PU is absent in subcarrier k . 
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(10) 

(11) 

 
For a large number of samples,

,k nyE is estimated with 

Gaussian distribution. The local probability of detection and 
local probability of false alarm are obtained as follows [17]: 
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(12) 
 
 
	
	
	

ሺ13ሻ 

 
 The decisions of SUs are combined at FC using OR 
decision rule.  Due to this rule, if at least one out of N 
secondary users report the PU's presence, the final decision 
will be based on spectrum occupancy. Otherwise, the 
specified band is assumed free. Since all SUs don't 
participate in sensing process, we consider an index to 
determine the priority of SUs for sensing each one of 
subcarriers. We use ,k n as assignment index of sensing. if

, 1k n  , node n  is participated in sensing the subcarrier k  

and , 0k n   denotes that node n does not sense the 

subcarrier k . Thus, 
kdP and 

kf
P of global decision for 

subcarrier k are given by: 
 

,,
1

1 (1 )
k k n

N

d k n d
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P P

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(14) 
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P P
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(15) 

 
  
3. Problem Formulation 

One of the performance metrics of cognitive radio 
networks is the throughput of secondary users which is 
defined as the number of bits per second of SUs that are 
physically delivered successfully. the transmission rate of 
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node n  on subcarrier k  is obtained via Shannon capacity 
formula.  

2

, ,

, 2 2
log (1 )

UP
k n k n

k n
u

h p
R


   

 
(16) 

 
where ,k np  is transmit power of node n on subcarrier k , 

2
u is variance of the noise. 

The system throughput is sum of the transmission rates of 
users on all of subcarriers and is given by: 

 
2
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,1 1
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UPK N
k n k n

k n
k n uk n

h p
R 
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   

 
(17) 

 

,k n is the assignment index for transmission and indicates 

which user transmits on each subcarrier. , 1k n  means that 

the user n is selected for transmission on subcarrier k  and 

, 0k n  means that the user n  doesn't occupy the 

subcarrier k . 
In this problem optimization, our goal is choosing the 

appropriate nodes for participating in cooperative sensing of 
each channel and also allocating subcarrier and power 
jointly to the transmission nodes so that the system 
throughput is maximized while the constraints on the global 
probability of detection and global probability of false alarm 
are satisfied and the transmission power not exceeding the 
available power budget. Therefore, the problem formulation 
can be written as follows: 
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(18.1) 

kf
P  {1,2,..., }k K   (18.2) 

 

dk
P  {1,2,..., }k K   (18.3) 
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,
1

1
N

k n
n




 {1,2,..., }k K   (18.6) 

, 0,k np  , {0,1}k n  , {0,1}k n   (18.7) 

 

where TP  is the total power budget. (18.2) and (18.3) are the 

detection performance constraints. Smaller value of 
provides higher opportunities for reusing the spectrum when 
it is free and bigger   provides better protection of PUs. 

(18.4) denotes that each user can sense one subcarrier or 
may not participate in the sensing of any subcarriers. (18.5) 
shows that each user cannot participate in sensing and 
transmission simultaneously. Equation (18.6) denotes that 
each subcarrier is allocated to only one user for 
transmission.  

According to (12) and (15), 
kf

P is independent of , .k n

Therefore. (18.2) can be replaced with another constraint 
which is obtained as: 
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(21) 

 

where ,
1

N

k k n
n

n 


  is the number of participating nodes in 

sensing the subcarrier k.  M denotes the maximum number 
of participating nodes in sensing process of each subcarrier. 

This problem is an integer programming problem because 
of integer nature of ,k n  and ,k n . Hence, this problem is a 

non-convex problem and finding the solution is very 
complex. For solving this problem, we relax the problem 
with assuming that ,k n  and ,k n are continuous parameters 

in the range from 0 to 1 [18]. Also, we convert the problem 
into standard format: 
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, 0k np  , (0,1)k n  , (0,1)k n   

 

(22.7) 

 

To check the convexity of problem, the Hessian of 

objective function 2( )f is obtained as follows: 
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The problem is convex because ׏ଶ݂ is positive 

semidefinite matrix. Also the constraints are convex, hence, 
Slater condition is satisfied and we can use Karush-Kuhn-
Tucker (KKT) conditions to solve this problem [19]. 
Considering the Lagrange multipliers ߣ, k , k , n , ߱, 

 k , and ,k n for constraints (22.1) , (22.2) , (22.3) , (22.4) , 

(22.5) , (22.6)  and (22.7), respectively, we form Lagrange 
function as follows: 

 

,

, , ,

2

, ,

, 2 , ,2
,1 1 1 1

, ,
1 1 1 1

, , ,
1 1 1 1

( , , , , , , , , )

log (1 ) ( )

( ) ( (1 (1 )))

( 1)

k n

k n k n k n k k n k

UPK N K N
k n k n

k n k n k n T
k n uk n k n

NK N K

k k n k k n d
k n k n

K N N K

k n k n n k n
k n n k

L p

h p
p P

M P

       

  
 

    

    

   

   

   



   

     

  

 

   

  
 

, , ,
1 1 1 1

( ( 1))
K N K N

k k n k n k n
k n k n

p  
   

      
 
(24) 

 

  

KKT conditions reveal that the optimal values of ,k n ,

,k n , ,k np  are obtained through differentiating L with 

respect to ,k n , ,k n , ,k np , and setting the derivatives to 

zero, respectively. 
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Solving this equation in terms of ,k n is very difficult. It is 

proved in [20] that obtaining the ratio , ,/k n k j  through 

mathematical operations, can be used to define a criterion to 
determine the user's priority for sensing. 
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Since the sensing nodes cannot participate in transmission 
process, , 0k n   . Also, the ratio of , ,/k n k j   is inversely 

related to the ratio of the equivalent expression of each one. 
Therefore, the user with lower cost( )n in (27), has higher 

priority for sensing.
1

N

nn


  is constant for all of n values 

and can be removed from (27).  
For obtaining the priority of nodes for transmission, we 

have: 
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Considering
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 , we have [21] 
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The solution of this equation is given by 
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where (.)W is Lambert function 
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As seen in (31), 
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is constant. Hence, for 
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should be maximized. It 

means that each subcarrier is allocated to the user which has 

maximum value of 
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(32) 

 
the optimum value of power in each subcarrier, is obtained 
as follows: 
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(33) 

 
By solving this equation in terms of ,k np , we have 
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Power is calculated only for users which are used for 
transmission, so , 1k n  in (34). 

To obtain the optimum values of Lagrange multipliers in 
(27), (32) and (34), complimentary slackness conditions 
should be analyzed as follows: 
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For the first condition ( ,
1

( ) 0
N

k k n
n

M  



  ), each one 

of the two modes (35.1) or (35.2) can be occurred. Also, this 

is true for second condition ( ( ) 0
kk dP    ).Because k

and k in (27) are independent of n  and are identical for all 

of the users on the specified channel. Hence, these 
parameters have no effect on determining the priority of 
users for sensing the particular channel and cannot be 

considered. In the condition , ,
1 1
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0  is satisfied, ,k np becomes indefinite according to 

(34) and it is not acceptable. so, 0  is acceptable and

should be calculated via bisection algorithm in the iterative 

manner  for obtaining ,k np  until , ,1 1
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is satisfied. 
(35.7) and (35.8) state that the power of user n on subcarrier 
k, cannot be lower than zero. thus, (34) can be rewritten as 
follows: 
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where (.) is equal to max(0,.) . Notice that *
, 1k n   for 

transmission nodes. Thus, it is removed from (34). 
 
4. Proposed Algorithm 

This paper presents three algorithms SSF (Sensing node 
selection first), TSF (transmission node selection first) and 
PSR (PUs selected randomly) to implement the mentioned 
problem. It should be noted that in the proposed algorithms, 
the nodes are cooperated to each other. Also, the sensing 
nodes and transmission nodes cannot be selected 
simultaneously. In SSF and PSR, the sensing nodes are 
chosen at first but in TSF, transmission nodes are selected at 
first. 

In SSF algorithm we start by cooperative spectrum 
sensing using energy detection and continue by allocating 
the proper subcarrier and power for transmission. Fig1 
shows the steps of this algorithm in detail. We should select 
the sensing nodes for cooperation in sensing process of each 
subcarrier at first. In this method, the PUs are arranged 
according to their distance from center of the region to 
determine their priority for assigning the sensing nodes. This 
is done because there are lower SUs around the PUs with 
greater distances from center of the region. Thus, if the 
sensing nodes are chosen for the closer PUs at first,  the 
farther PUs are forced to select their sensing nodes among 
the SUs with great distances from themselves. This leads to 
reduction in 

kdP for farther PUs. As a result, the PU with 

more distance has higher priority for assigning the sensing 
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nodes. In order to selecting the sensing nodes for specified 
subcarrier, cost is calculated for all of the users individually 
and sorted in ascending order. Then, as long as the number 
of participating nodes in sensing of that subcarrier is not 
more than M, we can add the next node with the lowest 
cost (highest priority) to the set of sensing nodes of that 
subcarrier, to meet the constraint  Pୢ

ౡ
൒ β (step 2 in Fig. 1). 

Then, the bisection algorithm is required to obtain the 
optimal value of power. For this purpose, the power of all 
users are calculated on each subcarrier according to (34), 
 

SSF Algorithm  

% number of assigned sensing nodes to the ( ) 0Counter k Step1.
k'th subcarrier. 

Sensing_set(k)= % assigned sensing nodes to subcarrierk. 

SU nodes = {1, ..., N} 

Step2.While ( ( )       {1,..., }Counter k M k K   ) 

if    {1,..., }
kdP k K   , break, end 

    for k=1:K 

Compute Distance (k)    % distance of k'th PU. 

% the subcarrier that is licensed for the PU with highest maxkFind 
distance from center of the  region. 

if 
maxkdP   

Compute cost( )n for set SU nodes on maxk  

Determine sensingn %the user with the minimum value of cost( )n . 

Counter( maxk ) = Counter( maxk ) +1 , Distance( maxk ) = 0; 

SU nodes = SU nodes\ sensingn ; 

Sensing _ set( maxk )    =  Sensing_ set( maxk ) sensingn End 

End 

End 

Step3. min = 0 , max  (a large enough number) 

While min max    (small number) 

min max( ) 2     

for k=1:K 

Compute ( )transn k according to (21) 

End 

If ,

1 trans

K

k n T

k n n

p P
 

   

min   

else if  ,

1 trans

K

k n T

k n n

p P
 

   

max   

End 

End 

 
Fig. 1. Pseudo code of SSF algorithm. 

then the user with highest priority due to (32) is selected for 
each  subcarrier and it's power will be the optimal power on 
that subcarrier (step 3 in Fig1). 

In the second algorithm (TSF algorithm), transmission 
nodes and their optimal power are determined at first, then 
the selected nodes are removed from the set of nodes and 
sensing nodes are chosen among the remaining nodes. This 
algorithm also uses the distance based priority of PUs for 
assigning the sensing nodes to them. Sensing node selection 
in this method is the same as sensing node selection in SSF 
algorithm.  

PSR algorithm is similar to SSF except that the PSR 
chooses PUs randomly for assigning the sensing nodes to 
them. It is clear that PSR has lower complexity compared 
with two other algorithms. 

 
5.  Simulation Results 

We assume SUs and PUs are distributed uniformly in a 
square region with length L, FC and base stations are in the 
center of this region. In this work, we use 16 OFDM system, 
so there are 16 subcarriers which each one is licensed for a 
PU (݇	= 16). The power of primary users on each subcarrier 

assigned is 320 10 W. In addition, the total power budget 
has been assumed 20 W. the values of  , cf ,  ,  and L  

are chosen as 25.5 μsec, 1.9 GHZ, 0.9, 0.1, 3000 m, 
respectively. Shadowing standard deviation of SU-PU link 
and SU uplink are assumed 3 db. Also, noise variance on 

each subcarrier is 1110 W. In the simulation results, we 
compare simulation results in different algorithms: 

1) SSF algorithm 
2) TSF algorithm  
3) PSR algorithm  

Also, the results are obtained from averaging the results 
of 15000 times running the program. 

Fig. 2 shows the average throughput for different 
number of SU nodes.  It is clear that the average throughput 
is an increasingly function in terms of number of nodes 
because we have more choices for selecting the appropriate 
transmission nodes. In SSF algorithm, the suitable nodes for 
transmission may be used in sensing process. Thus, it is 
possible that the inappropriate nodes remain for 
transmission and performance of transmission is degraded. It 
is shown that TSF algorithm provides the highest average 
throughput and in PSR algorithm, the average throughput 
has the lowest value. 

In the case that the maximum number of sensing nodes M 
is employed for a specified subcarrier and the constraint 

kdP   is not satisfied for that subcarrier, the problem has 

no answer. In Fig. 3, the success ratio is shown versus the 
total number of SU nodes. The success ratio is defined as the 
ratio of the number of cases that the problem has answer to 
the total number of program runs. 
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Fig. 2. Throughput mean vs the number of nodes. 
 

 
 

Fig. 3. Success ratio vs the number of nodes. 
 

 
 
Fig. 4. Average number of employed sensing nodes vs total 
number of nodes. 
 

In fact, this metric shows the ability of the algorithms for 
finding the feasible solutions. Increasing the number of 
nodes, reduces the distances between SUs and PUs and 
increases the values of detection probability. Therefore, the 
number of states that the problem has feasible solution, is 
increased. As a result, the success ratio is an increasing 
function in terms of the number of nodes. It is clear that in 
TSF algorithm, the success ratio is lower than SSF 
algorithm. Because, the sensing and transmission nodes 
aren't selected simultaneously. So, when we select the 
transmission nodes at first in TSF, the good nodes for 
sensing may be used for transmission process. thus, the 
sensing performance in TSF algorithm is lower than sensing  
performance in SSF. 

 

 
 
Fig. 5. Detection probability in different subcarriers for L=3000 
and N=164. 

 

 
 

Fig. 6. Success ratio for different size of square field (N=164) 
 

 
 

Fig. 7.  Average throughput of SUs in different size of square field 
(N=164). 
 

Fig. 4 presents the average number of employed sensing 
nodes for three cases. As mentioned above, increasing the 
number of nodes in a fixed size environment increases the 
values of detection probability. Hence, the constraint of 

kdP   is satisfied by employing lower number of sensing 

nodes. Also, we can observe that in SSF algorithm, lower 
number of sensing nodes are used and in PSR algorithm we 
need more sensing nodes than other algorithms to satisfy the 
constraint of detection probability

kdP  . 

In Fig. 5, it is shown that constraint Pୢ
ౡ
൒ β is satisfied 

for all of the subcarriers in three algorithms for N=164 and 
L=3000. As seen in this figure, the probability of detection 
in SSF algorithm is higher, compared to TSF algorithm. 
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Figure 6 illustrates the success ratio when the number of 
SUs are constant and equal to 164 and the length of the 
square field varies from 500 m to 3000m. Success ratio is 
decreased with increase of the size of the region. Because 
with increasing the length of the square field, the distance 
between the SU and PU nodes becomes higher and detection 
probability decreases. Also, it is clear that in TSF algorithm, 
the success ratio should be lower than the success ratio in 
SSF algorithm. 

When the length of the square field is low, the nodes are 
close together and the detection probability of PUs are high. 
Hence, it is no difference between PSR algorithm and 
distance based selection of PUs (SSF or TSF algorithm) as 
seen in Fig. 7. 

6. Conclusion 

This paper addressed the problem of node selection for 
sensing and transmission processes and also determining 
the optimal power of transmission nodes for maximizing 
the system throughput under some constraints. This 
optimization problem is solved through convex 
optimization methods and for implementing it, three 
algorithms are proposed.    

Simulation results show that distance based selection of 
PUs in SSF and TSF algorithms outperforms the random 
based selection of PUs in terms of throughput and sensing 
performance of system. Also, when transmission nodes are 
selected at first in TSF, we have more choices for 
transmission node selection, on the other hand there will be 
more limitation for selecting the sensing nodes. So TSF 
provides higher throughput than SSF algorithm. But SSF 
provides higher sensing efficiency and needs lower number 
of sensing nodes for satisfying the constraint of detection 
probability. Our solution is independent from the 
distribution of dP and can be applied to another fusion rules 

such as AND rule or “k-out-of-N” rule. 
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